计算理论 第8章 复杂性理论 V PSPACE类问题、L和NL类问题


计算理论导引 第7章 复杂性理论与难解问题 V 的相关笔记,包括:PSPACE类问题、L和NL类问题……

这部分最重要的内容是,从空间复杂性角度,如何证明一个问题是PSPACE完全问题。

第8章笔记 (V)

8.1 萨维奇定理

Def 8.1:令 M M M 是 一个完全、确定型图灵机, M M M空间复杂度 是一个函数: f : N → N f:N\to N f:NN,其中 f ( n ) f(n) f(n) 是在任何长为 n n n 的输入上扫描带子方格的最大数

(就是说当输入长度为 n n n 时, M M M 运行所占的空间)

Def 8.2:令 f : N → R + f:N\to R^+ f:NR+ 是一个函数,两个 空间复杂性类 定义为:

  • S P A C E ( f ( n ) ) = { L ∣ L SPACE(f(n))=\{L|L SPACE(f(n))={LL 是被 O ( f ( n ) ) O(f(n)) O(f(n)) 空间的 确定型图灵机 判定 的语言
  • N S P A C E ( f ( n ) ) = { L ∣ L NSPACE(f(n))=\{L|L NSPACE(f(n))={LL 是被 O ( f ( n ) ) O(f(n)) O(f(n)) 空间的 非确定型图灵机 判定 的语言

例 8.3: S A T SAT SAT 的空间复杂度是 O ( n ) O(n) O(n) ,只需要存储每次尝试时每个变量的真假值

例 8.4 A L L N F A = { < A > ∣ A ALL_{NFA}=\{ {\lt}A{\gt}|A ALLNFA={<A>A 是一个 N F A NFA NFA L ( A ) = Σ ∗ } L(A)={\Sigma}^\ast\} L(A)=Σ} ,则 A L L N F A ‾ \overline{ALL_{NFA} } ALLNFA 的空间复杂度为非确定的 O ( n ) O(n) O(n)

算法:从起始状态开始,重复执行 2 q 2^q 2q 次的非确定选择下一状态;若当中某个时刻所有分支都拒绝,则接受;若执行完 2 q 2^q 2q 次后未停机,则拒绝(因为状态数为 q q q 的情况下,比如最大分支数为 k k k 的情况下,所有状态转移最多有 k q k^q kq 种;因此若该状态机存在拒绝的字符串,那必定拒绝一个长度不超过 k q k^q kq 的字符串(有点像是缩胀))

萨维奇定理:

Th 8.1:对任何函数 f : N → R + f:N\to R^+ f:NR+ ,其中 f ( n ) ≥ n f(n){\ge}n f(n)n ,有 N S P A C E ( f ( n ) ) ⊆ S P A C E ( f 2 ( n ) ) NSPACE(f(n)){\subseteq}SPACE(f^2(n)) NSPACE(f(n))SPACE(f2(n))

证明:若采用平凡的证明方法,将非确定型图灵机的每个分支步骤保存下来,那么相当于空间不可复用,可能会消耗 2 O ( f ( n ) ) 2^{O(f(n))} 2O(f(n)) 的空间,因此不能这样操作;

我们选择使用类似二分的方式,设 t = 2 d f ( n ) t=2^{df(n)} t=2df(n) N N N 在所有分支上的运行时间的上界(即最大步数);我们从启示格局 c s t a r t c_{start} cstart 和中止格局 c a c c e p t c_{accept} caccept 选择一个中间格局 c m i d c_{mid} cmid ,并计算是否可以在不大于 t 2 \frac{t}{2} 2t 的时间内从 c s t a r t c_{start} cstart 运行到 c m i d c_{mid} cmid 、是否可以在不大于 t 2 \frac{t}{2} 2t 的时间内从 c m i d c_{mid} cmid 运行到 c a c c e p t c_{accept} caccept ;这样递归调用,所需栈的大小为 l o g 2 ( t ) = f ( n ) log_2(t)=f(n) log2(t)=f(n) ,保存每个格局需要 f ( n ) f(n) f(n) 的空间,那么所使用的最大空间为 O ( f 2 ( n ) ) O(f^2(n)) O(f2(n))

8.2 PSPACE 类

Def 8.6 P S P A C E PSPACE PSPACE 是在 确定型图灵机 上、在 多项式空间 内可判定的语言类,即 P S A P C E = ∪ k S P A C E ( n k ) PSAPCE=\cup_kSPACE(n^k) PSAPCE=kSPACE(nk)

由萨维奇定理得, N P S P A C E = P S P A C E NPSPACE=PSPACE NPSPACE=PSPACE ,因为任何多项式的平方仍是多项式

S A T SAT SAT A L L N F A ALL_{NFA} ALLNFA 都是 P S P A C E PSPACE PSPACE

注意:时间用远不会小于空间,本质是空间可复用,时间不可复用。因此一个在 t ( n ) t(n) t(n) 时间内运行的机器,即使每一步都是用一个新的空间,那么最多消耗 t ( n ) t(n) t(n) 的空间,即 N P ⊆ N P S P A C E = P S P A C E NP{\subseteq}NPSPACE=PSPACE NPNPSPACE=PSPACE

注意:对于 f ( n ) ≥ n f(n)\geq n f(n)n,一个消耗 f ( n ) f(n) f(n) 空间的图灵机至多有 f ( n ) 2 O ( f ( n ) ) f(n)2^{O(f(n))} f(n)2O(f(n)) 个不同的格局,而完全图灵机由于要停机,所以不可能出现相同的格局,因此消耗 f ( n ) f(n) f(n) 空间的图灵机必定在时间 f ( n ) 2 O ( f ( n ) ) f(n)2^{O(f(n))} f(n)2O(f(n)) 内运行,则 P S P A C E ⊆ E X P T I M E = ∪ k T I M E ( 2 n k ) PSPACE{\subseteq}EXPTIME={\cup_k}TIME(2^{n^k}) PSPACEEXPTIME=kTIME(2nk)

总结 P ⊆ N P ⊆ P S P A C E = N P S P A C E ⊆ E X P T I M E P{\subseteq}NP{\subseteq}PSPACE=NPSPACE{\subseteq}EXPTIME PNPPSPACE=NPSPACEEXPTIME

请添加图片描述

(已知 P ≠ E X P T I M E P\neq EXPTIME P=EXPTIME ,所以上述的包含式中至少有一个真包含,而且很有可能全部都是真包含)

(表述的时候说的 2 的几次幂,并不一定是真的 2 的几次幂,而是任意有限大常数的几次幂都可以看作是 2 的几次幂)

8.3 PSPACE 完全性

Def 8.7:若语言 B B B 满足下面两个条件,则它是 P S P A C E PSPACE PSPACE 完全的

  • B ∈ P S P A C E B{\in}PSPACE BPSPACE
  • P S P A C E PSPACE PSPACE 中的每一个语言 A A A 多项式时间可归约到 B B B

注意:当为一个复杂性类定义完全问题时,归约的模型必须比用来定义类本身的模型更加受限

(给定一个问题描述,判定/证明是PSAPCE完全性,和NP完全性证明一样,要遵循PSPACE完全性定义的两个方面要素)

TQBF问题

Def T Q B F = { < ϕ > ∣ ϕ TQBF=\{ {\lt}{\phi}{\gt}|{\phi} TQBF={<ϕ>ϕ 是真的全量词化的布尔公式 } \} }

(全量词化:每个变量都出现在某一量词的辖域内,如 ϕ = ∀ x ∃ y [ ( x ∨ y ) ∧ ( y ‾ ∨ y ‾ ) ] {\phi={\forall}x{\exists}y[(x\vee y)\wedge(\overline{y}\vee\overline{y})]} ϕ=xy[(xy)(yy)] ,因此即使不需要对 x x x y y y 指派, ϕ \phi ϕ 也已经有了真假值)

Th 8.8 T Q B F TQBF TQBF P S P A C E PSPACE PSPACE 完全的

T Q B F TQBF TQBF P S P A C E PSPACE PSPACE 问题

对每个量词的变量,然后对每个变量取 1 或 0 的情况都遍历一遍;要使得 ϕ \phi ϕ 为真:

  • 对于 ∀ x \forall x x ,需要 x x x 取 0 和 1 时 ϕ \phi ϕ 都为真;
  • 对于 ∃ x \exists x x ,需要 x x x 取 0 和 1 时 ϕ \phi ϕ 至少有一个为真;

存储的递归深度最大为每个变量都存一遍,因此可以在 O ( n ) O(n) O(n) 的空间内实现

T Q B F TQBF TQBF P S P A C E PSPACE PSPACE 完全的

模仿证明 3 S A T 3SAT 3SAT N P NP NP 问题的证法,将格局变化的合理性用布尔表达式表示:
ϕ c 1 , c 2 , t = ∃   m 1 [ ϕ c 1 , m 1 , t 2 ∧ ϕ m 1 , c 2 , t 2 ] {\phi}_{c_1,c_2,t}={\exists}{\,}m_1[{\phi}_{c_1,m_1,\frac{t}{2}} \wedge {\phi}_{m_1,c_2,\frac{t}{2}}] ϕc1,c2,t=m1[ϕc1,m1,2tϕm1,c2,2t]
但是你发现这相当于把公式的长度翻了一倍,因为长度: l e n ( ϕ c 1 , c 2 , t ) ≈ l e n ( ϕ c 1 , m 1 , t 2 ) ≈ l e n ( ϕ m 1 , c 2 , t 2 ) len({\phi}_{c_1,c_2,t}){\approx}len({\phi}_{c_1,m_1,\frac{t}{2}}){\approx}len({\phi}_{m_1,c_2,\frac{t}{2}}) len(ϕc1,c2,t)len(ϕc1,m1,2t)len(ϕm1,c2,2t) ,这样反复递归生成的布尔表达式是原来问题的指数倍了,达不到归约的效果,因此我们借助 ∀ \forall 量词:
ϕ c 1 , c 2 , t = ∃   m 1 ∀   ( c 3 , c 4 ) ∈ { ( c 1 , m 1 ) , ( m 1 , c 2 ) } [ ϕ c 3 , m 4 , t 2 ] {\phi}_{c_1,c_2,t}={\exists}{\,}m_1{\forall}{\,}(c_3,c_4){\in}\{(c_1,m_1),(m_1,c_2)\}[{\phi}_{c_3,m_4,\frac{t}{2}}] ϕc1,c2,t=m1(c3,c4){(c1,m1),(m1,c2)}[ϕc3,m4,2t]
这样子就把两个递归的子公式折叠为一个子公式;令 ϕ c s t a r t , c a c c e p t , t {\phi}_{c_{start},c_{accept},t} ϕcstart,caccept,t t = 2 d f ( n ) t=2^{df(n)} t=2df(n) ,这样递归调用,所需栈的大小为 l o g 2 ( t ) = f ( n ) log_2(t)=f(n) log2(t)=f(n) ,而子公式的增长是线性的,需要 O ( f ( n ) ) O(f(n)) O(f(n)) 的空间,那么所使用的最大空间为 O ( f 2 ( n ) ) O(f^2(n)) O(f2(n))

注意

  • 时间复杂性中,有关 N P NP NP 完全问题的证明是建立和 布尔表达式( 3 S A T 3SAT 3SAT) 可满足性判定问题之间的关联/转换;

  • 空间复杂性中,有关 P S P A C E PSPACE PSPACE 完全问题是建立和 量化布尔表达式( T Q B F TQBF TQBF) 取值是否为真值问题之间的关联/转换

博弈必胜策略

Def F O R M U L A − G A M E = { < ϕ > ∣ FORMULA-GAME=\{ {\lt}\phi{\gt}| FORMULAGAME={<ϕ> 在与 ϕ \phi ϕ 相关联的公式博弈中选手 E E E 有必胜策略 } \} }

(一般要求 ϕ = ∃ x 1 ∀ x 2 . . . Q \phi={\exists}x_1{\forall}x_2...Q ϕ=x1x2...Q ,即具有前束范式的量词化布尔公式;选手 A A A 和选手 E E E 分别轮流为对应的变量取值;若最终为 T R U E TRUE TRUE 则选手 E E E 赢)

Th 8.10 F O R M U L A − G A M E FORMULA-GAME FORMULAGAME P S P A C E PSPACE PSPACE 完全的

事实上,这个问题和 T Q B F TQBF TQBF 是一样的,对于 ϕ = ∃ x 1 ∀ x 2 . . . Q \phi={\exists}x_1{\forall}x_2...Q ϕ=x1x2...Q,相当于是说存在对 x 1 x_1 x1 的指派,对任意 x 2 x_2 x2 的指派……使得 Q Q Q 为真,那么不就是选手 E E E 获胜嘛!

广义地理学

Def G G = { < G , b > ∣ GG=\{ {\lt}G,b{\gt}| GG={<G,b> 在图 G G G 上以结点 b b b 起始的广义地理学游戏中,选手 I I I 有必胜策略 } \} }

(给定一个城市名,选手 I I I I I II II 轮流给出城市名,必须顶真一个字母,而这里的游戏中城市名是个有限集合,把城市名看作结点,可以接着给出的两个城市名有有向边相连;选手 I I I 先手)

请添加图片描述

Th 8.11 G G GG GG P S P A C E PSPACE PSPACE 完全的

G G GG GG P S P A C E PSPACE PSPACE 问题

对图进行拓扑排序,则递归的深度最多为结点的个数,空间为线性空间

G G GG GG P S P A C E PSPACE PSPACE 完全的

看图吧,从 T Q B F TQBF TQBF 归约到 G G GG GG ,构成这样的图:从 b 出发,某个变量取真从左边走,取假从右边走;我们认为最后一个是存在量词,即现在已经到结点 c c c 了,并且是选手 I I II II 选择:

fct-8-5

如果 ϕ \phi ϕ 为真,那么每个子句的三个变量中至少有一个为真,此时不论 I I II II 选择哪个子句结点, I I I 都可以选择这个子句中取值为真的变量结点;由于取值为真,因此下一步的那个节点之前就被走过了, I I II II 无路可走;

如果 ϕ \phi ϕ 为假,那么至少有一个子句的三个变量都为假,此时 I I II II 就选则这个子句结点,之后不论 I I I 选择哪个变量结点,因为是假的,因此这个变量节点的下一步那个结点之前并没有被选过,所以 I I II II 可以再走下一步,而 I I I 就是真的无路可走了;

8.4 L 和 NL 类

注意:接下来我们讨论亚线性的空间界限;但是亚线性的话甚至连输入都放不下,所以我们引入一条只读的辅助带作为输入,而只限制工作带的空间界限为亚线性

(有关亚线性类问题,可以和辅助外存、指针的运用关联起来了解)

(亚线性类问题的实质是以时间换空间,利用最有限的空间保存当前所利用的信息)

Def 8.12

  • L L L 是确定型图灵机再对数空间可判定的语言类, L = S P A C E ( l o g n ) L=SPACE(log_n) L=SPACE(logn)
  • N L NL NL 是非确定型图灵机在对数空间内可判定的语言类, N L = N S P A C E ( l o g n ) NL=NSPACE(log_n) NL=NSPACE(logn)

例 8.13:语言 A = { 0 k 1 k ∣ k ≥ 0 } A=\{0^k1^k|k{\ge}0\} A={0k1kk0} L L L 的成员

原来的方法是左右消除 0 和 1,现在我们直接把待判断的字符串放在输入带上,工作带上用二进制 count 0 和 1 的数目

例 8.14 P A T H PATH PATH N L NL NL 的成员

fct-7-2

s s s 开始,非确定地猜测下一结点,工作带上只保留当前结点的信息(其实空间复杂度是非确定的常数级);到达 t t t 后接受,或者执行 m m m 步后拒绝( m m m 是图的结点数 )

注意:这里发现,我们以前说的“ f ( n ) f(n) f(n) 空间界限的图灵机在 2 O ( f ( n ) ) 2^{O(f(n))} 2O(f(n)) 时间内运行 ” 对非常小的空间界限不再成立,比如这题,空间是 O ( 1 ) O(1) O(1) ,但是时间是 O ( n ) O(n) O(n) ,于是我们有了以下新的结论:

Def 8.15:若 M M M 是一个有制度输入带的图灵机, w w w 是输入,则 M M M w w w 上的格局 包括:状态、工作带和两个读写头位置;

注意:输入 w w w 不作为 M M M w w w 上的格局的一部分

注意 w w w 是长为 n n n 的输入,如果 M M M f ( n ) f(n) f(n) 空间内运行,则 M M M w w w 上的格局数是 n 2 O ( f ( n ) ) n2^{O(f(n))} n2O(f(n)) ,设 M M M c c c 个状态和 g g g 个带子符号,则输入头有 n n n 种位置,工作头有 f ( n ) f(n) f(n) 种位置,工作带上的字符有 g f ( n ) g^{f(n)} gf(n) 种可能,工作带有 c c c 种状态,所以格局数一共是 c n f ( n ) g f ( n ) cnf(n)g^{f(n)} cnf(n)gf(n) ,即 n 2 O ( f ( n ) ) n2^{O(f(n))} n2O(f(n))

因此,当 f ( n ) ≥ l o g   n f(n){\ge}log{\,}n f(n)logn 时,“ f ( n ) f(n) f(n) 空间界限的图灵机在 2 O ( f ( n ) ) 2^{O(f(n))} 2O(f(n)) 时间内运行 ” 的结论是成立的

8.5 NL 完全性

L L L 是否等于 N L NL NL 的问题是未知的 )

Def 8.16对数空间转换器 是只有一条只读输入带、一条只写输出带和一条读/写工作带的图灵机,其中:

  • 输出带的读写头不能向左移动(不能读已写内容)
  • 工作带可以至多包括 O ( l o g ( n ) ) O(log(n)) O(log(n)) 个符号

注意:并没有要求输入带的读取顺序,只要不改变输入带的内容,想怎么读就怎么读

对数空间转换器 M M M 计算一个函数: f : Σ ∗ → Σ ∗ f:{\Sigma^\ast}\to{\Sigma^\ast} f:ΣΣ ,其中 f ( w ) f(w) f(w) 是把 w w w 放到 M M M 的输入带上运行、 M M M 停机后写在 M M M 的输出带上的字符串; f f f 称为 对数空间可计算函数

Def:若语言 A A A 可通过对数空间可计算函数 f f f 映射可归约到语言 B B B ,则称 A A A对数空间可归约 B B B ,记为 A ≤ L B A{\le}_LB ALB

Def 8.17:语言 B B B N L NL NL 完全的,若:

  • B   ∈   N L B{\,}{\in}{\,}NL BNL
  • N L NL NL 中的每个 A A A 对数空间可归约到 B B B

注意:NP完全性、PSPACE完全性其中都是多项式时间归约方式,NL完全性中是对数空间可归约

(因为 N L NL NL 中所有问题都在多项式时间内可解;我们之前说过,归约的方式必须比定义类本身的约束要更严格)

Th 8.18 A ≤ L B A{\le}_LB ALB B   ∈   L B{\,}{\in}{\,}L BL ,则 A   ∈   L A{\,}{\in}{\,}L AL

(就是说,如果一个语言对数空间可归约到另一个已知属于 L L L 的语言,则这个语言也属于 L L L

如果仿造前面证明 P P P 问题的类似结论的朴素证法的话会出问题,因为 M M M 的输入带只能读不能写,直接一次性把 w w w 转换为 f ( w ) f(w) f(w) 的话, f ( w ) f(w) f(w) 就必须保存在 M M M 的工作带上,可是装不下欸hhhh

书上说是按照需求来计算出 f ( w ) f(w) f(w) 中的个别符号,不要一次性转换,这样就可以用时间换空间

Th 8.19:若有一个 N L NL NL 完全语言属于 L L L ,则 L = N L L=NL L=NL

PATH 是 NL 完全的

Th 8.20 P A T H PATH PATH N L NL NL 完全的

P A T H PATH PATH 属于 N L NL NL 问题

例 8.14 已经证明了 P A T H PATH PATH N L NL NL 的成员

P A T H PATH PATH N L NL NL 难的

即证明 N L NL NL 中任意一语言 A A A 对数空间可归约到 P A T H PATH PATH

算法:将输入字符串 w w w 对数空间归约映射为一个有向图,图的结点对应于非确定型图灵机在输入 w w w 上的格局,结点之间的边代表一个格局到另一个格局可以一步产生;若初始格局到接受格局之间存在路径,则接受 w w w

证明:显然 P A T H PATH PATH 有解时, A ∈ N L A{\in}NL ANL ;主要证明给定输入 w w w ,在对数空间内构造 < G , s , t > {\lt}G,s,t{\gt} <G,s,t>

由于格局包括状态、两个读写头的位置和工作带内容,其中最长的是工作带内容,因此给出一个对数空间转换器 M M M ,只需要顺序遍历出所有长度为 c   l o g ( n ) c{\,}log(n) clog(n) 的字符串,判断它是不是 M M M w w w 上的合法格局,并将合法的格局写到输出带上

(这里的 ”合法“ 并不是说要从 w w w 可以生成,而是说它至少得是个格局,而不是随机的一串;所以这次判断只要花费常数空间)

类似地, M M M 也可以枚举出所有的长度为边的长度的字符串,并且验证这是不是两条格局的边、这两个格局之间可不可以一步转化,将合法的边写到输出带上

(因为验证边只需要考虑比如 c 1 c_1 c1 格局可不可以一步到达 c 2 c_2 c2 格局,所以只需要计算出 c 1 c_1 c1 的下一格局,并与 c 2 c_2 c2 比较,因此花费空间为 c   l o g ( n ) c{\,}log(n) clog(n)

Th 8.21 N L   ⊆   P NL{\,}{\subseteq}{\,}P NLP

只要看 N L NL NL 中的 N L NL NL 完全问题,比如刚刚的 P A T H PATH PATH 问题,前面已知 P A T H PATH PATH P P P 类问题,所以显而易见

8.6 NL = coNL

这个记结论就好了hhhhh,书上是证明了 P A T H ‾ \overline{PATH} PATH N L NL NL 问题,而 c o N L coNL coNL 问题都可以对数空间可归约到 P A T H ‾ \overline{PATH} PATH 上,因此成立

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
虽然不是入门教材,但个人感觉这才是真正的“计算机文化基础”,看看节目录就会爱不释手。<br><br>目录<br>1、1字符串、字母表和语言<br>第一 预备知识<br>1、2图和树<br>1、3归纳证明<br>1、4集合<br>1、5关系<br>1、6本书提要<br>2、1有穷状态系统<br>第二 有穷自动机和正规表达式<br>2、2基本定义<br>2、3非确定有穷自动机<br>2、4具有∈动作的有穷自动机<br>2、5正规表达式<br>2、6双向有穷自动机<br>2、7具有输出的有穷自动机<br>2、8有穷自动机的应用<br>3、1正规集合的泵作用引理<br>第三 正规集合的性质<br>3、2正规集合的封闭性质<br>3、3正规集合的判定算法<br>3、4Myhill-Nerode定理和有穷自动机的最小化<br>4、1动机和引言<br>第四 上下文无关文法<br>4、2上下文无关文法<br>4、3派生树<br>4、4上下文无关文法的简化<br>4、5Chomsky范式<br>4、6Greibach范式<br>4、7固有多义上下文无关语言的存在性<br>5、1非形式描述<br>第五 下推自动机<br>5、2定义<br>5、3下推自动机和上下文无关语言<br>6、1关于CFL的泵作用引理<br>第六 上下文无关语言的性质<br>6、2CFL的封闭性质<br>6、3有关CFL的判定算法<br>7、1引言<br>第七 图灵机<br>7、2图灵机模型<br>7、3可计算语言和可计算函数<br>7、4图灵机构造技术<br>7、5图灵机的修改<br>7、6Church假设<br>7、7作为枚举器的图灵机<br>7、8等价于基本模型的受限图灵机<br>8、1问题<br>第八 不可判定性<br>8、2递归语言和递归可枚举语言的性质<br>8、3通用图灵机和一个不可判定问题<br>8、4Rice定理和某些其它的不可判定问题<br>8、5Post对应问题的不可判定性<br>8、6图灵机的有效计算和无效计算:证明CFL问题不可判定性的一个工具<br>8、7Greibach定理<br>8、8递归函数论初步<br>8、9Oracle计算<br>9、1正规文法<br>第九 Chomsky谱系<br>9、2无限制文法<br>9、3上下文有关语言<br>9、4语言之间的关系<br>第十 确定的上下文无关语言<br>10、1DPDA的标准形式<br>10、2DCFL在补运算下的封闭性<br>10、3预测机<br>10、4DCFL的其它封闭性质<br>10、5DCFL的判定性质<br>10、6LR(0)文法<br>10、7LR(0)文法与DPDA<br>10、8LR(k)文法<br>11、1三元族和完全三元族<br>第十一 语言族的封闭性质<br>11、2广义时序机映射<br>11、3三元族的其它封闭性质<br>11、4抽象语言族<br>11、5AFL运算的独立性<br>11、6小结<br>12、1定义<br>第十二 计算复杂性理论<br>12、2线性加速、带压缩和带数目的减少<br>12、3谱系定理<br>12、4复杂性量度间的关系<br>12、5转换引理和非确定谱系<br>12、6一般复杂性量度的性质:间隙定理、加速定理和并定理<br>12、7公理化复杂性理论<br>13、1多项式时间和空间<br>第十三 难解型问题<br>13、2某些NP完全问题<br>13、3co-NP<br>13、4PSPACE完全问题<br>13、5对于P和NSPACE(logn)的完全问题<br>13、6某些可证明的难解型问题<br>13、7对于带Oracle的图灵机的P=NP问题:辨别是否P=NP时我们能力的限度<br>14、1辅助下推自动机<br>第十四 其它重要语言集锦<br>14、2栈自动机<br>14、3加标语言<br>14、4发展系统<br>14、5小结<br>参考文献<br>汉英名词索引<br>

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Air浩瀚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值