BZOJ 2301 Problem b (莫比乌斯反演)

题目链接:BZOJ 2301

这道题求a<=x<=b,c<=y<=d,且gcd(x,y)=k的(x,y)对数,可以用容斥原理,将该问题分解成四个子问题,那么将问题抽象出这个问题,即为对于1<=x<=N,1<=y<=M,gcd(x,y)

为z的(x,y)的对数。然后我们就用莫比乌斯反演求出,具体推导什么的用公式编辑器太麻烦了。让我们一起膜拜PoPoQQQ的题解吧。。。华丽丽的传送门:神犇的博客

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;

#define maxn (50000+10)
int vis[maxn],mu[maxn],prime[maxn],sum[maxn];

void mobius(){//线性筛莫比乌斯函数 
	int cnt=0;
	mu[1]=1;
	for(int i=2;i<=50000;i++){
		if(!vis[i]){
			prime[++cnt]=i;
			mu[i]=-1;
		}
		for(int j=1;j<=cnt&&i*prime[j]<=50000;j++){
			vis[i*prime[j]]=1;
			if(i%prime[j])mu[i*prime[j]]=-mu[i];
			else{
				mu[i*prime[j]]=0;
				break;
			}
		}
	}
	for(int i=1;i<=50000;i++)sum[i]=sum[i-1]+mu[i];
}

int find(int N,int M){//求[1,N]和[1,M]的互质的数的对数 
	int ans=0,last=0;
	if(N>M)swap(N,M);
	for(int i=1;i<=N;i=last+1){
		last=min(N/(N/i),M/(M/i));
		ans+=(N/i)*(M/i)*(sum[last]-sum[i-1]);
	}
	return ans;
}

int main(){
	mobius();
	int N,a,b,c,d,k;
	scanf("%d",&N);
	while(N--){
		scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);//利用容斥原理转化为四个子问题 
		int ans=find(b/k,d/k)-find((a-1)/k,d/k)-find(b/k,(c-1)/k)+find((a-1)/k,(c-1)/k);
		printf("%d\n",ans);
	}
	return 0;
}


发布了117 篇原创文章 · 获赞 2 · 访问量 5万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览