用友BIP上线DeepSeek|SAP将集成DeepSeek|开启“企业软件+大模型”数智化新动力

今日,用友官宣:用友全面上线以DeepSeek-V3和DeepSeek-R1作为基座大模型的智能服务。除DeepSeek外,还集成豆包、百川等模型,以满足企业不同业务主题和场景的智能化需求

图片

来源:用友官方微信公众号

随着DeepSeek等开源基础大模型的崛起,企业软件行业正经历一场底层技术架构的颠覆性变革。

用友2023年发布企业服务垂类大模型YonGPT 1.0,2024年8月发布 YonGPT 2.0,今日全面上线DeepSeek作为基座大模型,可见DeepSeek大模型的重要性。

前不久,SAP方面透露,正在考虑集成DeepSeek,将其加入SAP 人工智能中心。SAP首席执行官柯睿安表示,这最终可能会使企业软件公司受益。

同时,SAP首席财务官多米尼克·阿萨姆(Dominik Asam)表示,如果中国模型(DeepSeek)符合成本、可靠性和隐私标准,SAP愿意使用它。

2023年,金蝶推出金蝶云·苍穹GPT大模型,将其定位为最懂管理的企业级大模型平台,估计离集成或接入DeepSeek也不远了毕竟谁能耐得住DeepSeek开源免费、推理能力强、算力超低成本等绝对诱惑呢?

Oracle、微软等国际厂商,及国内一帮子ERP大大小小的ERP厂商,估计都在加紧测试DeepSeek大模型,待到时机成熟,估计就会放出什么大招!

一直有人质疑,AI到底能给ERP系统带来什么?能不能带来什么,产生哪些价值,光看SAP、Oracle、用友、金蝶等企业软件及解决方案提供商最近这些年对AI的态度和采取的行动来看,AI势必要让ERP绽放全新的色彩和价值。

AI背后是技术逻辑的转变,基础大模型正成为企业软件的“新操作系统”,大模型驱动的智能ERP能实现数据智能治理、数据动态预测、流程自动优化、知识智慧管理等。

说的有点飘了,说点具体点的。传统ERP依赖历史数据生成报表,尤其是用户需求复杂时,开发个报表并不是那么简单,不同ERP产品开发报表的费用也是差别很大,对于SAP系统来说,过去ABAP顾问开发几个查询报表可能就得上百万,如今有了AI大模型,大模型驱动的ERP系统完全可以根据语音提示要求快速生产所需的报表数据,更可以实现实时报表数据的动态展示、报告自动生成,甚至是图像、视频等多种形式的数据输出。(注:欢迎大家留言,AI能落地应用的场景

展望未来,对于企业客户来说,借助于DeepSeek等开源大模型,很多企业可以以相对较低的成本实现智能化转型。如通过RPA(机器人流程自动化)结合大模型的应用,可以大幅减少财务对账和订单处理的人力成本。

对于各ERP厂商来说,基于自研模型,集成如DeepSeek、豆包等多款大模型,形成多模协同模式,强化自身ERP系统智能服务,为客户提供更强大、灵活的解决方案,在竞争激烈的市场中保持领先地位并推动持续增长,岂不快哉!

### 用友BIP集成DeepSeek的方法 #### 集成背景与意义 随着人工智能技术的发展,越来越多的企业级应用开始引入AI功能以提升效率和服务质量。对于像用友BIP这样的企业资源规划(ERP)平台而言,通过集成先进的自然语言处理(NLP)模型如DeepSeek,可以显著增强系统的智能化水平,提供更加便捷高效的用户体验[^3]。 #### 技术准备 为了顺利地完成用友BIPDeepSeek之间的集成工作,需提前做好如下几项准备工作: - **环境搭建**:确保拥有稳定运行的服务器环境,并安装必要的依赖库和支持工具; - **API接入权限申请**:向DeepSeek官方获取合法有效的API访问密钥以及相关接口文档资料; - **熟悉双方产品特性**:深入了解用友BIP的功能模块结构及其开放能力;同时掌握DeepSeek所提供的各项服务能力特点。 #### 实现方案概述 整个集成过程主要分为三个阶段来进行操作实施: 1. **对接设计** - 明确业务需求场景,确定具体要实现哪些类型的交互方式(例如聊天机器人问答、文件解析等); - 设计合理的请求响应机制,在不影响原有系统性能的前提下尽可能简化流程逻辑; 2. **编码开发** - 利用Python或其他编程语言编写中间件程序作为桥梁连接两端的服务端口; - 对于特定的任务类型可考虑采用异步非阻塞的方式提高并发处理速度; ```python import requests def call_deepseek_api(prompt, api_key): url = "https://api.deepseek.example/v1/generate" headers = { 'Authorization': f'Bearer {api_key}', 'Content-Type': 'application/json' } payload = {"prompt": prompt} response = requests.post(url, json=payload, headers=headers) result = response.json() return result['text'] ``` 3. **测试优化** - 构建全面详尽的据集用于验证新加入特性的准确性及时效性表现; - 收集反馈意见不断调整参配置直至达到最佳效果为止。 #### 安全保障措施 在整个项目推进过程中始终要把安全性放在首位位置考量,比如加密传输敏感息防止泄露风险发生;定期审查代码是否存在潜在漏洞隐患等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值