面向自动驾驶的边缘计算技术研究综述

本文探讨了边缘计算在自动驾驶领域的应用,重点分析了协同感知和任务卸载技术,强调了边缘计算在解决自动驾驶汽车环境感知范围受限和计算资源不足问题中的重要作用。协同感知通过与其他车辆或路边单元共享信息,扩大了感知范围;任务卸载则通过将计算任务转移至边缘节点,解决了车载计算资源不足的问题。同时,文章指出了协同感知信息共享和融合、任务卸载面临的挑战,如资源受限、车辆移动性等,并概述了相关研究现状和未来研究方向。
摘要由CSDN通过智能技术生成

本文由吕品,许嘉,李陶深,徐文彪联合创作

摘要

边缘计算在自动驾驶的环境感知和数据处理方面有着极其重要的应用。自动驾驶汽车可以通过从边缘节点获得环境信息来扩大自身的感知范围,也可以向边缘节点卸载计算任务以解决计算资源不足的问题。相比于云计算,边缘计算避免了长距离数据传输所导致的高时延,能给自动驾驶车辆提供更快速的响应,并且降低了主干网络的负载。基于此,首先介绍了基于边缘计算的自动驾驶汽车协同感知和任务卸载技术及相关挑战性问题,然后对协同感知和任务卸载技术的研究现状进行了分析总结,最后讨论了该领域有待进一步研究的问题。

1 引言

计算机技术和传感器技术的发展使汽车逐渐成为更加智能的自动驾驶汽车。自动驾驶汽车的出现将会提高交通通行效率,减少道路交通事故。美国高速公路交通安全管理局将自动驾驶分为L0~L5 共 6 个等级,从 L0 到 L5,汽车的智能化水平逐渐提升。L5 级的自动驾驶汽车可以在任何环境下完成所有的驾驶操作而不需要人类驾驶员的干预。

为了提供安全的自动驾驶服务,自动驾驶汽车需要获取所处环境的完整信息,并对其进行实时处理以做出行驶决策。从环境信息的获取到行驶决策的制定可以分为 3 个阶段,分别是环境信息获取、信息融合处理和驾驶行为决策。

1)  环境信息获取。自动驾驶汽车通过多种车载传感器获取所处环境的信息,如用定位系统、惯性测量单元获取位置信息,用激光雷达绘制周围环境的点云,用摄像头获取环境的图像数据,用雷达和声纳检测距离车辆最近的物体等。

2)  信息融合处理。此阶段的任务是将获取的环境信息进行融合处理,使自动驾驶汽车了解周围的环境。信息融合处理阶段有 3 个主要的任务,分别是自我定位、目标识别和目标跟踪。这 3 个任务都需要大量的计算资源来完成。

3)  驾驶行为决策。在自动驾驶汽车了解了自身所处的环境之后,就开始预测其他车辆或行人等障碍物的运动路径,然后根据预测结果做出自身的路径规划和避障决策。

高级别的自动驾驶汽车需要在无人干涉的情况下完成以上 3 个步骤,但仅依靠单个自动驾驶汽车的能力是很难做到的,原因如下。

1)  在环境信息获取方面,单个自动驾驶汽车存在传感器视野盲区,无法获取完整的所处环境信息,这可能导致自动驾驶汽车无法检测即将到来的危险。

2)  在数据处理方面,车载计算系统难以完成对大量异构传感器数据的实时处理,其中仅摄像头每秒就产生 1.8 GB 的数据。若在自动驾驶汽车上配备高性能的计算系统,则会大大增加自动驾驶汽车的成本。

总体来说,环境信息获取和数据处理两方面的问题导致仅依靠单个自动驾驶汽车的能力无法实现高级别自动驾驶,因此需要其他智能节点的协助。

为了解决数据处理方面的问题,有些研究者提出了自动驾驶汽车与云计算相结合的方案,将数据上传到云端处理。云端虽然有大量的计算资源, 可以在极短的时间内完成数据的处理,但是仅依靠云端为自动驾驶汽车提供服务在很多情况下是不可行的。因为自动驾驶汽车在行驶过程中会产生大量需要实时处理的数据,如果将这些数据都通过核心网传输到远程云端处理,那么仅数据的传输便会导致很大的时延,无法满足数据处理的实时性要求。核心网络的带宽也难以支持大量自动驾驶汽车同时向云端发送大量的数据,而且一旦核心网络出现拥塞导致数据传输不稳定,自动驾驶汽车的行驶安全便得不到保障。

将边缘计算应用到自动驾驶领域将有助于解决自动驾驶汽车在环境数据获取和处理上所面临的问题。边缘计算是指在网络边缘执行计算的一种计算模型,其操作对象来自云服务的下行数据和万物互联服务的上行数据,而边缘计算中的“边缘” 是指从数据源到云计算中心路径之间的任意计算和网络资源。简而言之,边缘计算将服务器部署到用户附近的边缘节点,在网络边缘(如无线接入点) 给用户提供服务,避免了长距离数据传输,给用户提供更加快速的响应。边缘计算、移动边缘计算、雾计算在自动驾驶领域的应用较相似,本文将它们统称为边缘计算。

协同感知和任务卸载是边缘计算在自动驾驶领域的主要应用,这 2 种技术使实现高级别自动驾驶成为可能。其中,协同感知技术使汽车可以获取其他边缘节点的传感器信息,扩大了自动驾驶汽车的感知范围,增加了环境数据的完整性;任务卸载技术将自动驾驶汽车的计算任务卸载到其他边缘节点执行,解决了自动驾驶汽车计算资源不足的问题。面向自动驾驶汽车的边缘计算离不开车用无线通信技术(V2X, vehicle-to-everything)的支持,它提供了自动驾驶汽车与智能交通系统中其他元素的通信手段,是自动驾驶汽车和边缘节点合作的基础。目前,V2X 主要基于专用短程通信(DSRC, dedicated short range communication)和蜂窝网络。其中 DSRC 是一种专门用于车辆与车辆(V2V, vehicle-to-vehicle)和车辆与道路基础设施(V2I, vehicle-to-infrastructure)之间的通信标准,具有数据传输速率高、时延低、支持点对点或点对多点通信等优点。以 5G 为代表的蜂窝网络具有网络容量大、覆盖范围广等优点,适用于 V2I 通信和边缘服务器之间的通信。

本文首先对自动驾驶汽车与边缘节点之间的协同感知和任务卸载进行介绍,并阐述它们所面临的挑战;然后分别综述了协同感知技术和任务卸载技术的研究现状;最后指出了该领域有待进一步研究的问题。

2 面向自动驾驶的边缘计算及其面临的挑战

传统的自动驾驶技术专注于提升单个车辆的能力来实现更高级别的自动驾驶,然而在车辆上安装数量更多或精度更高的传感器并不能解决单个车辆感知范围受限的问题。计算资源不足的问题可以通过给车辆配备高性能的计算系统来解决,但这会极大地增加自动驾驶汽车的成本,不利于自动驾驶汽车的普及。

边缘计算技术的发展给高级别自动驾驶的实现带来了契机,自动驾驶汽车通过与边缘节点之间的协同感知和任务卸载能够解决自身在环境感知和数据处理方面的问题。在网络拓扑结构上,边缘节点与自动驾驶汽车是一跳或两跳的通信距离,这使数据传输时延大大减少,能在满足自动驾驶应用极其严格的时延约束下为自动驾驶汽车提供服务。

在自动驾驶场景中,边缘节点包括配备边缘服务器的交通基础设施、无线接入点和网络基站以及移动智能设备等,后文将上述元素统称为边缘节点。需要注意的是,在自动驾驶汽车的视角下,其他自动驾驶汽车也是边缘节点。

接下来,本节将分别对协同感知和任务卸载进行简要介绍,并指出它们所面临的挑战。

2.1 协同感知

协同感知技术能够扩大自动驾驶汽车的感知范围,使自动驾驶汽车可以获得更加完整的环境信息,包括路面情况、车辆、行人或其他障碍物等。这使自动驾驶汽车能够提前对可能发生的碰撞进行检测和规避,并能够更好地规划行驶路径。

在车车协同方面,Kim 等探讨了一个使用合作感知的多车辆协同驾驶系统,验证了协同感知的可行性。类似地,Gunther 等证明了协同感知可以使车辆提前感知到障碍物,从而有更多时间采取避障措施,并验证了低渗透率(自动驾驶汽车占道路车辆总数的百分比)下协同感知也对自动驾驶汽车的环境感知有着积极影响。在车路协同方面, Calvo 等为自动驾驶汽车与 RSU(road side unite)之间的协作设计了一个通信理论架构,并证明了该架构在协同感知方面的可行性。Wang 等分析了不同基础设施部署方案对自动驾驶汽车协同感知的影响,总结出在道路交叉口和道路沿线以均匀间距部署RSU 能更好地覆盖道路区域。文献研究了RSU 摄像头位置校准与目标定位的问题。这些研究都为协同感知的实现奠定了基础。

图 1 展示了典型的协同感知场景。其中车辆 A 由于右前方停放车辆的遮挡无法感知到行人的存在,继续行驶则有产生碰撞的可能。若此时协作车辆 B 或 RSU 将它们所感知到的行人信息共享给车辆 A,那么车辆 A 就能规避此次碰撞。

1639987910(1).jpg

图 1 典型的协同感知场景

实现自动驾驶汽车与边缘节点的协同感知需要解决以下 2 个问题。

1)  协同感知信息共享。自动驾驶汽车和边缘节点之间共享环境感知数据能够扩大自动驾驶车辆的感知范围。但是在通信资源有限的情况下,如何设置环境感知数据的共享策略是一个很重要的问题,比如共享原始数据还是处理过的数据、以何种频率共享数据、共享全部数据还是部分数据等。

2)  协同感知信息融合。在车辆接收到其他边缘节点的环境感知信息后,需要将自身的感知数据和接收到的信息进行融合,得到实时的、扩展的环境信息。这需要设计环境感知数据的融合算法。

本文将在第 3 节从以上 2 个方面对协同感知的研究现状进行归纳总结。

2.2 任务卸载

在获取了环境信息之后,自动驾驶汽车要在极短的时间内对这些数据进行处理,实时地进行自我定位、目标识别和目标跟踪等任务,从而做出正确的行驶决策。在自我定位和目标检测与跟踪阶段都需要大量的计算资源,而自动驾驶汽车的计算系统难以在时延约束下完成这些处理,这便需要边缘节点的协助。任务卸载的基本目标是使边缘节点在满足任务时延约束的条件下完成计算任务,并将计算结果返回给卸载发起节点。

图 2 展示了典型的任务卸载场景。其中主车辆 A 可以将自身的计算任务 t1 和 t2 卸载到边缘服务器或有空闲计算资源的协作车辆 B 执行,然后它们再将计算结果返回给主车辆 A。任务的卸载可分为任务整体卸载和任务部分卸载。整体卸载是将整个计算任务卸载到同一个边缘节点执行,如任务 t2 的卸载方式。部分卸载是将任务划分为多个部分,自动驾驶汽车可以自身执行一部分,然后将其余的部分卸载到边缘节点,如任务 t1 的卸载方式。

1639988735(1).jpg

图 2 典型的任务卸载场景

自动驾驶汽车与边缘节点之间的任务卸载主要面临以下挑战。

1)  资源受限。相比于云服务器,边缘服务器的计算能力是有限的。边缘节点为大量自动驾驶汽车提供任务卸载服务时可能会出现计算资源不足的情况,尤其是交通流量密集区域的边缘节点。这需要制定高效合理的资源分配策略,同时还需要通过合理的任务调度来平衡多个边缘节点之间的负载, 将负载过多的节点上的计算任务转移到相对较空闲的节点。除了计算资源,通信资源的合理分配也是十分重要的一方面。

2)  车辆移动性。自动驾驶汽车的高速移动使边缘环境下的任务卸载变得更加复杂。边缘节点的服务范围是有限的,这使自动驾驶汽车在移动过程中会频繁切换为它提供服务的边缘节点。在边缘节点切换时,需要保证服务不中断。类似地,车辆之间的任务卸载也需要考虑车辆的相对移动导致的通信距离的快速变化。此外,车辆的移动性导致车载自组网的网络拓扑处于高度动态变化之中,使寻找数据传输路由变得更加困难。

3)  任务执行环境的隔离。边缘节点会同时为大量自动驾驶汽车服务,同时执行多个计算任务。为了保护自动驾驶汽车的安全和隐私,防止同时执行的计算任务之间相互影响,边缘节点在执行自动驾驶计算任务时需要为它们提供安全独立的运行环境。常用的虚拟机和容器等隔离技术由于启动时间的限制,在自动驾驶任务极其严格的时延约束下难以实现灵活的资源分配。

现有任务卸载技术的研究可分为 2 类:一类是对任务卸载架构的研究,专注于研究自动驾驶汽车

和边缘节点之间的合作策略;另一类是对任务卸载算法的研究,专注于处理任务调度、资源分配等具体问题。本文将在第 4 节从任务卸载架构和任务卸

载算法 2 个方面综述自动驾驶汽车与边缘节点之间任务卸载技术的研究现状。

3 协同感知技术

自动驾驶汽车与边缘节点之间的协同感知技术解决了自动驾驶汽车感知范围受限的问题,给自动驾驶汽车提供了更加完整的环境信息,有助于自动驾驶汽车的避障和路径规划。实现协同感知要解决 2 个主要的问题,即如何共享感知信息和如何进行感知信息的融合。接下来,本节将分别总结分析协同感知信息(CPM, cooperative perception message)共享和协同感知信息融合这 2 个方面的研究现状。

3.1 协同感知信息共享

CPM 的共享是协同感知的基础,车辆和边缘节点之间 CPM 的传递需要一定的带宽,且有着严格的时延约束,这对网络性能提出了要求。此外,合理的 CPM 共享策略也十分重要,它定义了车辆以何种频率共享感知数据、共享哪些感知数据等问题,高效的 CPM 共享策略可以在减少通信资源使用的同时增强自动驾驶汽车的感知能力。

现有对 CPM 共享的研究可分为支持共享 CPM 的网络架构和 CPM 共享策略这 2 个方面,相关研究工作如表 1 所示。

1639990294(1).png

1)  支持共享 CPM 的网络架构

自动驾驶汽车和边缘节点之间传递 CPM 是实现协同感知的基础,频繁的信息共享必然会对网络性能提出较高的要求。不同的网络架构具有不同的特性,在不同的通信场景、交通情境下需要选择合适的网络架构。

在网络连接方式选择方面,Wei 等分析了无线局域网、WAVE 和 4G 这 3 种网络的优缺点,提出车辆之间可以同时采用这 3 种方式连接,然后在数据传输之前利用神经网络模型根据车辆密度、速度和数据传输量选择一个更合适的通信方式。

自动驾驶汽车的行驶速度不同对网络性能的要求也不一样,汽车的行驶速度越快,就需要越频繁地获取 CPM,对网络性能的要求也就越高。文献[17-18]分析了自动驾驶汽车在不同行驶速度下对数据率的要求,指出了使用毫米波通信的重要性。其中,文献[17]证明了随着汽车速度的加快,传感器生成数据的最小数据速率呈指数级增加。文献[18]的研究发现,30 GHz 和 60 GHz 的毫米波V2V通信分别允许自动驾驶汽车以 63 km/h 和 86 km/h 的最大速度行驶,而 5 GHz 频带仅允许车辆以 50 km/h 的速度行驶。

此外,当自动驾驶汽车数量占道路汽车总数比例(即渗透率)太低时,可能会因为自动驾驶汽车之间距离太远而难以找到支持数据传输的 V2V 链路,这时便需要通过 V2I 进行数据的传输。Wang 等分析了不同交通密度和不同渗透率下 V2V 和V2I 的网络容量需求,得出 CPM 交换产生的 V2I 流量在中等渗透率处(如渗透率为 0.5 时)最高, 当大多数车辆同时参与协同感知时绝大部分数据都将通过 V2V 传输。

2)  CPM 共享策略

不同的 CPM 共享策略对网络性能的要求不同, 给车辆提供的感知效果也不同。若过于频繁地共享感知数据,则会给无线信道造成很大压力;若共享感知数据的频率过低,则会导致信息年龄太大,信息价值降低。类似地,共享所有感知数据会导致冗余信息过多,浪费通信资源;共享部分感知数据可能会使接收方收到的信息不完整,难以利用其做出安全合理的行驶决策。

欧洲电信标准化协会(ETSI, European Tele-communications Standards Institute)制定了 CPM 的生成规则,定义了车辆何时应生成和发送 CPM 以及要包含在 CPM 中的信息。在 ETSI 制定的 CPM 生成规则中,车辆必须检查每个时间间隔是否应该生成和传输新的 CPM。默认情况下,时间间隔设置为 100 ms。对于每个时间间隔,如果车辆检测到一个新物体,或者对于任何先前检测到的物体都满足以下条件,则该车辆应生成一个新的 CPM。

①从该物体上次的数据被纳入 CPM 以来,它的绝对位置改变超过了 4 m。

②该物体的绝对速度自上一次被纳入 CPM 以来变化了超过 0.5 m/s。

③上一次检测到的物体被纳入CPM 是在1 s 或更久之前。

Thandavarayan 等将 ETSI 制定的动态 CPM 生成策略与周期性生成策略进行了对比,周期性生成策略即车辆周期性广播检测到的所有物体的信息,得出动态 CPM 生成策略比周期性生成策略更加灵活,它使每个 CPM 中包含的对象数目适应交通密度和速度,减少了数据冗余传输。此后, 他们通过避免信息的重复广播对 ETSI 制定的动态 CPM 生成策略进行了优化,进一步减少了数据的冗余。在所提出的优化策略中,如果车辆最近从其他车辆接收到了有关某一对象的更新信息,则该车辆就不再广播有关该对象的信息,这进一步减少了不必要的数据传输。

有研究者根据CPM 的重要程度定义了CPM 共享策略。其中,文献[22]提出通过预测 CPM 对接收方的重要程度来决定是否发送该CPM 的策略。在 CPM 发送之前,发送信息的车辆通过信息论的方法预测该信息对潜在接收方的价值,当网络拥塞时,发送方可以推迟甚至取消低价值信息的传输, 从而缓解了信道压力,更可靠地将重要信息传递给接收方。文献[23-24]则通过提高包含重要地理位置信息的 CPM 的优先级来增强协同感知的性能。其中,文献[24]定义了车辆感兴趣区域,即车辆希望感知的区域,在通信资源有限的情况下,选择部分自动驾驶汽车共享感知数据,并提高包含大多数车辆感兴趣区域信息的 CPM 的发送频率,扩大了汽车的感知范围并且降低了信息年龄。

以上感知信息共享策略都是针对车与车的协同感知,而 RSU 与自动驾驶汽车的感知信息共享也十

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值