Salient Subsequence Learning for Time Series Clustering论文笔记

Salient Subsequence Learning for Time Series Clustering

Qin Zhang, Jia Wu, Member, IEEE, Peng Zhang, Guodong Long, Chengqi Zhang, Senior Member, IEEE
TPAMI 2018

什么是shapelet?

shapelet是时间序列的子序列,具有判别性,其在某种意义上最大程度地代表类。

从树叶分类说起,自然是根据树叶的形状分类
在这里插入图片描述
将每个树叶用一个一维的时间序列来表示
在这里插入图片描述
根据shapelets分类
在这里插入图片描述

shapelets的优点
  • 可解释性好
  • 结果更精确,因为考虑的
### 方法概述 显著目标检测是一种计算机视觉技术,旨在识别图像中最突出的目标区域。递归聚合深度特征方法的核心在于利用卷积神经网络提取多层特征并对其进行逐级融合[^1]。这种方法能够有效捕捉不同尺度下的上下文信息以及局部细节。 具体而言,该方法通常采用一种编码器-解码器结构来完成任务。编码器部分负责从输入图片中抽取多层次的语义特征;而解码器则通过上采样操作逐步恢复空间分辨率,并在此过程中引入来自更深层的高级语义特征作为指导信号[^2]。 为了进一步增强模型性能,在某些变体设计里还加入了循环机制或者注意力模块。前者允许网络多次迭代处理同一组数据从而不断优化预测结果的质量;后者则是帮助聚焦于那些真正重要的位置进而提升整体表现水平[^3]。 以下是基于PyTorch框架的一个简单实现例子: ```python import torch.nn as nn class RAGNet(nn.Module): def __init__(self, num_classes=1): super(RAGNet, self).__init__() # Encoder layers (e.g., ResNet backbone) self.encoder_layer_1 = ... self.encoder_layer_n = ... # Decoder layers with recurrent aggregation mechanism self.decoder_layer_1 = RecurrentAggregationModule(...) self.decoder_layer_m = RecurrentAggregationModule(...) # Final prediction layer self.prediction = nn.Conv2d(in_channels=..., out_channels=num_classes, kernel_size=1) def forward(self, x): enc_outs = [] for encoder in [self.encoder_layer_1,...]: x = encoder(x) enc_outs.append(x) dec_in = None for decoder, skip_conn in zip([self.decoder_layer_1,...], reversed(enc_outs)): dec_in = decoder(skip_conn, dec_in) output = self.prediction(dec_in) return output ``` 其中`RecurrentAggregationModule`代表具有特定功能逻辑的具体组件定义,需依据实际需求另行编写[^4]。 ### 注意事项 当训练此类模型时需要注意平衡好各个阶段之间的权重更新关系以防止单侧过拟合现象发生。另外由于涉及到较复杂的梯度传播路径所以可能需要调整学习率策略以促进稳定收敛过程[^5]。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值