GPU(Graphics Processing Unit)详解
1. GPU的定义与核心特性
GPU(图形处理器)是一种专为并行计算和图形渲染优化的处理器。与CPU(中央处理器)不同,GPU通过大规模并行架构实现高效处理海量数据,尤其在处理规则化、高并发任务时性能显著优于CPU。
关键特性:
-
高并行度:现代GPU包含数千个计算核心(如NVIDIA H100拥有18,432个CUDA核心)。
-
专用内存系统:配备高带宽显存(如GDDR6X,带宽达1TB/s)。
-
计算范式:基于SIMD(单指令多数据)或SIMT(单指令多线程)架构。
2. GPU与CPU的架构对比
特性 | CPU | GPU |
---|---|---|
核心数量 | 4-64个复杂核心 | 数千个简化核心 |
任务类型 | 串行逻辑处理、低延迟任务 | 高吞吐量并行计算 |
内存延迟 | 低(纳秒级) | 高(需通过并行性掩盖延迟) |
典型应用 | 操作系统、通用计算 | 图形渲染、科学模拟、AI |
3. GPU的工作原理
(1) 图形渲染管线(传统核心功能)
GPU最初为图形处理设计,其渲染管线分为多个阶段