数据结构实验:连通分量个数

数据结构实验:连通分量个数

Time Limit: 1000MS  Memory Limit: 65536KB
Problem Description
 在无向图中,如果从顶点vi到顶点vj有路径,则称vi和vj连通。如果图中任意两个顶点之间都连通,则称该图为连通图,
否则,称该图为非连通图,则其中的极大连通子图称为连通分量,这里所谓的极大是指子图中包含的顶点个数极大。
例如:一个无向图有5个顶点,1-3-5是连通的,2是连通的,4是连通的,则这个无向图有3个连通分量。
 
Input
 第一行是一个整数T,表示有T组测试样例(0 < T <= 50)。每个测试样例开始一行包括两个整数N,M,(0 < N <= 20,0 <= M <= 200)
分别代表N个顶点,和M条边。下面的M行,每行有两个整数u,v,顶点u和顶点v相连。
Output
 每行一个整数,连通分量个数。
Example Input
2
3 1
1 2
3 2
3 2
1 2
Example Output
2
1
#include<stdio.h>
#include<string.h>
#define maxn 1000
int pre[maxn];
int findroot(int x)
{
    if(pre[x]!=x)
        pre[x]=findroot(pre[x]);
    return pre[x];
}
void join(int x,int y)
{
    int dx=findroot(x);
    int dy=findroot(y);
    if(dx!=dy)
        pre[dx]=dy;
}
int main()
{
    int t,n,m;
    int i,j;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        for(i=1;i<=n;i++)
        {
            pre[i]=i;
        }
        for(i=1;i<=m;i++)
        {
            int x,y;
            scanf("%d%d",&x,&y);
            join(x,y);
        }

        int sum=0;
        for(i=1;i<=n;i++)
        {
            if(pre[i]==i) sum++;
        }
        printf("%d\n",sum);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值