matplotlib & seaborn相关性热图

这篇博客介绍了如何利用Python的pandas和seaborn库来生成数据的相关性矩阵,并通过seaborn的heatmap函数绘制相关性热力图。同时,针对seaborn显示中文时遇到的字体问题,提供了清除matplotlib缓存的解决方案,确保能正确显示中文列名。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

1.数据准备

关键一步,使用pandas的corr函数生成相关矩阵。

from string import ascii_letters
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import palettable

# 生成随机数
rs = np.random.RandomState(33)#类似np.random.seed,即每次括号中的种子33不变,每次可获得相同的随机数
d = pd.DataFrame(data=rs.normal(size=(100, 26)),#normal生成高斯分布的概率密度随机数,需要在变量rs下使用
                 columns=list(ascii_letters[26:]))

# corr函数计算相关性矩阵(correlation matrix)
dcorr = d.corr(method='pearson')#默认为'pearson'检验,可选'kendall','spearman'

 

2、seaborn.heatmap绘制correlation heatmap

vmax设置颜色的阈值,根据数据范围确定

data必须是数值型

cmap colormap样式

annot 图片上显示数字

</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值