单目图像深度估计的评价指标

这篇博客探讨了单目图像深度估计的常用评价指标,包括绝对相对误差、平方相对误差、均方根误差、对数均方根误差和精确度。这些指标用于量化算法的性能,其中误差越小、精确度越高表示效果越好。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

单目图像深度估计中定量评价指标采用大部分算法所使用的相对误差 (Relative Error, REL)、均方根误差 (Roor Mean Squared Error, RMS) 、对数误差 (Lg Error, LG), 以及精确度 (% correct)。通常误差越小越好,精确度越高越好。

1.绝对相对误差:

AbsRel=\frac{1}{N}\sum_{i=1}^{N}\frac{|D_{i}-D_{i}^{*}|}{D_{i}^{*}}

2.平方相对误差:
           SqRel=\frac{1}{N}\sum_{i=1}^{N}\frac{|D_{i}-D_{i}^{*}|^{2}}{D_{i}^{*}}

3.均方根误差:
           RMS=\sqrt{\frac{1}{N}\sum_{i=1}^{N}|D_{i}-D_{i}^{*}|^{2}}

4.对数均方根误差:

            

### 单目摄像头深度估计的Python实现 #### 方法概述 单目摄像头深度估计是指通过单一图像来推断场景中物体的距离。这一过程通常依赖于机器学习模型,尤其是卷积神经网络(CNN),这些模型可以从大量带标注的数据集中学习到不同距离下物体外观的变化模式[^1]。 #### 数据准备 为了训练用于深度估计的CNN模型,需要收集大量的成对数据——即同一场景下的彩色图片及其对应的深度图。公开可用的数据集如NYU Depth V2提供了这样的配对样本,可用于初步实验和验证算法的有效性[^2]。 #### 构建与训练模型 可以采用预训练好的架构作为基础,例如ResNet或DenseNet,并在其上构建适合特定任务需求的部分。下面是一个简单的Keras/TensorFlow代码片段展示如何加载并修改现有模型: ```python from tensorflow.keras.applications import ResNet50 from tensorflow.keras.layers import Input, Dense, UpSampling2D from tensorflow.keras.models import Model input_tensor = Input(shape=(None, None, 3)) base_model = ResNet50(include_top=False, weights='imagenet', input_tensor=input_tensor) # 添加自定义层以适应回归问题 x = base_model.output predictions = Dense(1)(UpSampling2D(size=8)(x)) model = Model(inputs=base_model.input, outputs=predictions) ``` 此段代码创建了一个基于ResNet50的基础特征提取器,并附加了额外的全连接层来进行最终预测。注意这里使用`UpSampling2D`操作恢复原始输入尺寸以便逐像素输出深度值。 #### 测试与评估 完成训练之后,应该在一个独立测试集上来检验所开发系统的性能。常用的评价指标包括平均绝对误差(MAE)、均方根误差(RMSE)以及结构相似度指数(SSIM)。 对于想要深入了解该领域最新进展的研究人员来说,查阅最新的学术论文和技术报告是非常有帮助的;而对于开发者而言,则可以通过在线课程平台获取更多实践指导资源[^3]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值