单目图像深度估计的评价指标

这篇博客探讨了单目图像深度估计的常用评价指标,包括绝对相对误差、平方相对误差、均方根误差、对数均方根误差和精确度。这些指标用于量化算法的性能,其中误差越小、精确度越高表示效果越好。
摘要由CSDN通过智能技术生成

单目图像深度估计中定量评价指标采用大部分算法所使用的相对误差 (Relative Error, REL)、均方根误差 (Roor Mean Squared Error, RMS) 、对数误差 (Lg Error, LG), 以及精确度 (% correct)。通常误差越小越好,精确度越高越好。

1.绝对相对误差:

AbsRel=\frac{1}{N}\sum_{i=1}^{N}\frac{|D_{i}-D_{i}^{*}|}{D_{i}^{*}}

2.平方相对误差:
           SqRel=\frac{1}{N}\sum_{i=1}^{N}\frac{|D_{i}-D_{i}^{*}|^{2}}{D_{i}^{*}}

3.均方根误差:
           RMS=\sqrt{\frac{1}{N}\sum_{i=1}^{N}|D_{i}-D_{i}^{*}|^{2}}

4.对数均方根误差:

            

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值