《高等统计物理学》3:量子系综

本文深入探讨了量子统计物理中的量子系综,从经典统计的类比出发,阐述量子统计系综的特性,包括统计算符、量子刘维尔定理以及微正则系综、正则系综和巨正则系综的量子化表达。通过理解量子系综,可以更好地掌握统计物理在量子领域的应用。
摘要由CSDN通过智能技术生成

知乎链接:《高等统计物理学》3:量子系综

《高等统计物理学》2:经典系综 主要复习了经典统计物理中三大系综(微正则系综,正则系综和巨正则系综)的概率表达式和熵公式的热力学模型推导以及概率模型推导。在这一部分,我们将复习量子统计系综。

二. 从“经典统计系综”类比和推广到“量子统计系综”

1. 量子统计系综

对于经典统计,系统在 t 时刻的状态可以在 Γ \Gamma Γ 空间中用 d Γ = d q 1 d q 2 , . . . , d q f d p 1 d p 2 , . . . , d p f d\Gamma=dq_1dq_2,...,dq_fdp_1dp_2,...,dp_f dΓ=dq1dq2,...,dqfdp1dp2,...,dpf 描述;对于量子统计,由于存在不确定关系,原则上不能用确定的坐标和动量来描写粒子的状态,因此系统在 t 时刻的状态只能由系统波函数 ψ ( q 1 , q 2 , . . . , q f ; t ) \psi(q_1,q_2,...,q_f;t) ψ(q1,q2,...,qf;t) 来描述( ∣ ψ ( q 1 , q 2 , . . . , q f ; t ) ∣ 2 |\psi(q_1,q_2,...,q_f;t)|^2 ψ(q1,q2,...,qf;t)2 的含义是 t 时刻在 ( q 1 , q 2 , . . . , q f ) (q_1,q_2,...,q_f) (q1,q2,...,qf) 处找到这 N N N 个粒子的概率,这个要铭记在心,否则后面相关内容会理解起来困难)。
明白了上述的微观状态描述方法后,下面就让我们来弄清楚经典系综、纯粹系综和混合系综。我们来把学过的知识和这里即将引入的量子系宗来进行一个类比吧:

(1)对于全同近独立粒子系统,粒子之间没有相互作用,因此 { ε l } , { ω l } , { α l } \{\varepsilon_l\},\{\omega_l\},\{\alpha_l\} { εl},{ ωl},{ αl} 信息可知,我们可以把一个粒子看作一个整体,算出 Ω \Omega Ω ,确定 { α l } \{\alpha_l\} { αl} ,进而算出 B B B ;

(2)对于全同非独立粒子系统,粒子之间具有相互作用,因此 { ε l } , { ω l } , { α l } \{\varepsilon_l\},\{\omega_l\},\{\alpha_l\} { εl},{ ωl},{ αl} 信息不可知,我们必须把整个系统看作一个整体,以系综为工具,测出每个系统的观测值 B s B_s Bs 以及它出现的概率 ρ s \rho_s ρs ,从而进行统计平均来算出 B ‾ = ∑ s ρ s B s \overline B=\sum_s \rho_sB_s B=sρsBs (剧透一下,在混合系综中,公式为: ⟨ A ^ ⟩ = ∑ i P i ⟨ ψ i ∣ A ^ ∣ ψ i ⟩ \langle\hat A\rangle=\sum_iP_i\langle\psi_i|\hat A|\psi_i\rangle A^=iPiψiA^ψi,放在这里是为了一个类比和理解!)

(a)对于经典系宗,每个系统的 B s B_s Bs 可得,而它们出现的概率 ρ s \rho_s ρs ,可以通过系综测得所有可能的微观状态数 Ω \Omega Ω ,和等概率原理得到;

(b)对于纯粹系综,它的定义是“倘若系综中的 N N N 个系统都处于同一态 ψ ( q 1 , q 2 , . . . , q f ; t ) \psi(q_1,q_2,...,q_f;t) ψ(q1,q2,...,qf;t) ,则该系综称为纯粹系综“。每个系统的 B s B_s Bs 可得,而它们出现的概率 ρ s \rho_s ρs (即在 ( q 1 , q 2 , . . . , q f ) (q_1,q_2,...,q_f) (q1,q2,...,qf) 处出现的概率,因为系统的一个状态可以由它来表征),可以通过计算系统的波函数的平方 ∣ ψ ( q 1 , q 2 , . . . , q f ; t ) ∣ 2 |\psi(q_1,q_2,...,q_f;t)|^2 ψ(q1,q2,...,qf;t)2 得到;

(c)对于混合系综,它的定义是“倘若系综中的 N N N 个系统有 N 1 N_1 N1 个处于 ψ 1 ( q 1 , q 2 , . . . , q f ; t ) \psi_1(q_1,q_2,...,q_f;t) ψ1(q1,q2,...,qf;t) 态,有 N 2 N_2 N2 个处于 ψ 2 ( q 1 , q 2 , . . . , q f ; t ) \psi_2(q_1,q_2,...,q_f;t) ψ2(q1,q2,...,qf;t)态, … ,有 N i N_i Ni 个处于 ψ i ( q 1 , q 2 , . . . , q f ; t ) \psi_i(q_1,q_2,...,q_f;t) ψi(q1,q2,...,qf;t)态, … ,则每次测量,抽到系统处于 ψ 1 ( q 1 , q 2 , . . . , q f ; t ) , ψ 2 ( q 1 , q 2 , . . . , q f ; t ) , . . . , ψ i ( q 1 , q 2 , . . . , q f ; t ) , . . . \psi_1(q_1,q_2,...,q_f;t),\psi_2(q_1,q_2,...,q_f;t),...,\psi_i(q_1,q_2,...,q_f;t),... ψ1(q1,q2,...,qf;t),ψ2(q1,q2,...,qf;t),...,ψi(q1,q2,...,qf;t),... 诸态的概率分别为 P 1 = N 1 N , P 2 = N 2 N , . . . , P i = N i N , . . . , P_1=\frac{N_1}{N},P_2=\frac{N_2}{N},...,P_i=\frac{N_i}{N},... , P1=NN1,P2=NN2,...,Pi=NNi,...这样的 N ( N → ∞ ) N(N\rightarrow\infty) N(N)个系统的集合称为混合系综“。每个系统的 B s B_s Bs 可得,而它们出现的概率 ρ s \rho_s ρs (即在 ( q 1 , q 2 , . . . , q f ) (q_1,q_2,...,q_f) (q1,q2,...,qf) 处出现的概率,因为系统的一个状态可以由它来表征),则需要将这些所有的态都考虑进去 ∑ i P i ∣ ψ i ( q 1 , q 2 , . . . , q f ; t ) ∣ 2 \sum_iP_i|\psi_i(q_1,q_2,...,q_f;t)|^2 iPiψi(q1,q2,...,qf;t)2

对于量子统计系综而言,研究的就是上述中的混合系综。

注意纯粹系综和混合系综的区别:纯粹系综之间有干涉,而混合系综之间没有干涉,PPT5-24有例子,对于第二个算符平均的例子,如果 ∣ ψ i > |\psi_i> ψi>正好都是 A ^ \hat A A^ 的本征态,即对于不同的 i i i ∣ ψ i > |\psi_i> ψi>相互正交,则该例子中的干涉项消失,但是空间位置例子中的干涉项仍无法消去,因此他俩还是有本质上的不同的。

总而言之,粒子间无相互作用时,经典统计和量子统计的观测值可以算出来;粒子间有相互作用时,经典统计用经典系综,量子统计用量子系综(所以不要把量子统计也潜意识归到经典系综里去了,从而产生错误的量子系综有什么用处的错误质疑)。

2. 统计算符

统计算符 ρ ^ \hat \rho ρ^(对应于经典统计物理里面的概率密度函数),其在任意表象中的矩阵形式称为密度矩阵(PS:量子力学中的矩阵元是用来计算可观测量“数值”的步骤中,一个非常重要的统计工具)。我们下面来导出它的形式:

我们从混合系综的统计平均公式 ⟨ A ^ ⟩ = ∑ i P i ⟨ ψ i ∣ A ^ ∣ ψ i ⟩ \langle\hat A\rangle=\sum_iP_i\langle\psi_i|\hat A|\psi_i\rangle A^=iPiψiA^ψi 开始,

怎么理解这个式子呢?下面谈谈我的想法: 我们的目标观测量可以写成算符的形式,即 A ^ \hat A A^,在量子力学中我们学过 ⟨ ψ i ∣ A ^ ∣ ψ i ⟩ \langle\psi_i|\hat A|\psi_i\rangle ψiA^ψi 是求期望的公式,可以理解为对某个微观状态出现的概率(因为 ⟨ ψ i ∣ ψ i ⟩ \langle\psi_i|\psi_i\rangle ψiψi 就是波函数的平方,即概率)以及它对应的观测量的值做运算。我们已经知道,混合系宗中的态有很多,它们分别以一定的概率出现,即在外层继续嵌套 ∑ i P i \sum_iP_i iPi。那么最后我们就能得到观测量的统计平均值 ⟨ A ^ ⟩ \langle\hat A\rangle A^ 了。总而言之:即为观测量在每个态中期望的期望。

因为描写混合系宗中的那些态 ∣ ψ i ⟩ |\psi_i\rangle ψi 不一定是正交的,这种情况可能发生在系统的哈密顿量具有简并的本征值时,现另取一组完全正交归一的基态 ∣ φ n ⟩ ( n = 1 , 2 , . . . ) |\varphi_n\rangle(n=1,2,...) φn(n=1,2,...),首先我们来证明其封闭性:

假设波函数 ∣ ψ ⟩ |\psi\rangle ψ 能够展开为基态 ∣ φ n ⟩ ( n = 1 , 2 , . . . ) |\varphi_n\rangle(n=1,2,...) φn(n=1,2,...)的线性组合形式,即 ∣ ψ ⟩ = ∑ n a n ∣ φ n ⟩ |\psi\rangle=\sum_na_n|\varphi_n\rangle ψ=nan

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值