《高等统计物理学》Cookbook(持续更新)

本文是《高等统计物理学》的速查工具,涵盖了薛定谔方程求解、消灭和产生算符的定义、性质及其应用,玻色子和费米子的基本概念,以及泡利不相容原理。同时讨论了高Tc超导体的主要特性。
摘要由CSDN通过智能技术生成

在《高等统计物理学》系列文章中,有时候会用到一些重要的量子力学基础知识,比如定态薛定谔方程的求解、产生和消灭算符等等。本部分为读者建立一个即用即查的“工具箱”,为方便正文的高效学习。

内容
一. 薛定谔方程求解
二. 消灭算符和产生算符
三. 玻色子、费米子和保、泡利不相容原理
四. 高Tc超导体的主要性质

一. 薛定谔方程求解

1. 求解步骤

(1)分离变量;
Ψ ( r , t ) = ψ ( r ) f ( t ) ; \Psi(r,t)=\psi(r)f(t) ; Ψ(r,t)=ψ(r)f(t);(2)构造等式;

借助薛定谔方程 i ℏ ∂ Ψ ( r , t ) ∂ t = − ℏ 2 2 m ∇ 2 Ψ ( r , t ) + U ^ ( r ) Ψ ( r , t ) , i\hbar\frac{\partial \Psi(r,t)}{\partial t}=-\frac{\hbar^2}{2m} \nabla^2\Psi(r,t)+\hat U(r)\Psi(r,t) , itΨ(r,t)=2m22Ψ(r,t)+U^(r)Ψ(r,t)代入得到 i ℏ ∂ ψ ( r ) f ( t ) ∂ t = − ℏ 2 2 m ∇ 2 ψ ( r ) f ( t ) + U ^ ( r ) ψ ( r ) f ( t ) = H ^ ψ ( r ) f ( t ) , i\hbar\frac{\partial \psi(r)f(t)}{\partial t}=-\frac{\hbar^2}{2m} \nabla^2\psi(r)f(t)+\hat U(r)\psi(r)f(t)=\hat H\psi(r)f(t) , itψ(r)f(t)=2m22ψ(r)f(t)+U^(r)ψ(r)f(t)=H^ψ(r)f(t)进而得 i ℏ ψ ( r ) ∂ f ( t ) ∂ t = f ( t ) H ^ ψ ( r ) , i\hbar\psi(r)\frac{\partial f(t)}{\partial t}=f(t)\hat H\psi(r) , iψ(r)tf(t)=f(t)H^ψ(r)整理得 1 i ℏ d f ( t ) f ( t ) 1 d t = 1 ψ ( r ) H ^ ψ ( r ) = E 。 \frac{1}{i \hbar}\frac{df(t)}{f(t)}\frac{1}{dt}=\frac{1}{\psi(r)}\hat H \psi(r)=E 。 i1f(t)df(t)dt1=ψ(r)1H^ψ(r)=E(3)微分方程解出 f(t) ;

很容易得到, f ( t ) = C e − i ℏ E t f(t)=Ce^{-\frac{i}{\hbar}Et} f(t)=CeiEt (只是要特别注意一下这里放置C的位置)。

(4)定态薛定谔方程方程解出 ψ ( r ) \psi(r) ψ(r)

(5)得到 Ψ ( r , t ) 。 \Psi(r,t) 。 Ψ(r,t)

(待解决问题1:按照该套路算出一维无限深势阱、一维谐振子和氢原子的波函数)

二. 消灭算符和产生算符

1. 定义式

消灭算符: a = ( μ ω 2 ℏ ) 1 2 ( x ^ + i μ ω p ^ ) = ( μ ω 2 ℏ ) 1 2 ( x ^ + ℏ μ ω d d x ) a=(\frac{\mu \omega}{2 \hbar})^{\frac{1}{2}}( \hat x+\frac{i}{\mu \omega}\hat p)=(\frac{\mu \omega}{2 \hbar})^{\frac{1}{2}}(\hat x+\frac{\hbar}{\mu\omega}\frac{d}{dx}) a=(2μω)21(x^+μωi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值