《高等统计物理学》2:经典系综

本文详细介绍了如何从概率论视角推导正则系综和巨正则系综的概率表达式与熵公式。通过热力学模型、最大熵原理和信息熵的概念,探讨了这两种系综的建立和应用,同时讨论了正则系综和巨正则系综的熵公式推导。文章深入浅出,适合对统计物理有一定了解的读者深入学习。
摘要由CSDN通过智能技术生成

知乎链接:《高等统计物理学》2:经典系综

对系综思想的理解,读者们有兴趣可以参见我之前写的 《高等统计物理学》1: 领悟系综

一. 从概率论视角推导正则系综和巨正则系综的概率表达式和熵公式

第一节课老师就带着我们肝概率论和随机过程,对于本科不是物理科班出生的笔者而言,一开始不用被深奥难懂的物理背景虐得死去活来,还算是松了一口气。下面我们就来看一看,概率论和随机过程的知识是如何在统计物理中发挥作用的。
最先笔者还觉得,万物皆物理…,我大物理就是厉害,shannon大神当初信息熵的灵感肯定也来源于统计物理。到后来才发现,统计物理中的一些熵,是可以从大神的信息熵推导来的!(待解决问题 1:信息熵是否还可以由统计物理的熵推导过去呢?)

1. 热力学模型推导正则系综和巨正则系综的概率表达式

首先,让我们来简单回顾一下

1.1 正则系综的概率表达式:

ρ s = 1 Z e − β E s \rho_s=\frac{1}{Z}e^{-\beta E_s} ρs=Z1eβEs(无简并的量子统计表达式)

ρ l = 1 Z Ω l e − β E l \rho_l=\frac{1}{Z}\Omega_le^{-\beta E_l} ρl=Z1ΩleβEl (有简并的量子统计表达式)

ρ ( p , q ) d Ω = 1 Z e − β H ( p , q ) d Ω N ! h N r \rho_{(p,q)}d\Omega=\frac{1}{Z}e^{-\beta H(p,q)}\frac{d\Omega}{N!h^{Nr}} ρ(p,q)dΩ=Z1eβH(p,q)N!hNrdΩ(经典统计表达式)

1.2 巨正则系综的概率表达式:

ρ N s = 1 Ξ e − α N − β E s \rho_{Ns}=\frac{1}{\Xi}e^{-\alpha N-\beta E_s} ρNs=Ξ1eαNβEs (无简并的量子统计表达式)

ρ N s = 1 Ξ Ω l e − α N − β E l \rho_{Ns}=\frac{1}{\Xi}\Omega_le^{-\alpha N-\beta E_l} ρNs=Ξ1ΩleαNβEl(有简并的量子统计表达式)

ρ N ( p , q ) d Ω = 1 Ξ e − α N − β H ( p , q ) d Ω N ! h N r \rho_{N(p,q)}d\Omega=\frac{1}{\Xi}e^{-\alpha N-\beta H(p,q)}\frac{d\Omega}{N!h^{Nr}} ρN(p,q)dΩ=Ξ1eαNβH(p,q)N!hNrdΩ(经典统计表达式)

下面我会给出它们的推导过程,如果你已对此很熟悉,可以直接跳过下面这一部分。(但我觉得你至少得很清楚:公式中各字母的含义以及公式的推导思想和过程。反正笔者还不太熟悉,赶紧拿起笔又推导了一边哈哈啊哈)

第一步,建模(如下图)
在这里插入图片描述
图1 是微正则系综中的一个系统(孤立系统,V,E,N不变),图2 是正则系综中的一个系统(热源+状态处于s的系统=孤立系统,V,T,N不变),图3 是巨正则系综中的一个系统(热源+粒子源+状态处于s的系统=孤立系统)

第二步,弄清楚上述公式中 β , α , γ \beta,\alpha,\gamma βαγ 的含义及由来(虽然这里没有 γ \gamma γ

我们先给定: β = ∂ ln ⁡ Ω ∂ E , α = ∂ ln ⁡ Ω ∂ N , γ = ∂ ln ⁡ Ω ∂ V \beta=\frac{\partial\ln \Omega}{\partial E}, \alpha=\frac{\partial \ln\Omega}{\partial N}, \gamma=\frac{\partial \ln\Omega}{\partial V} β=ElnΩ,α=NlnΩ,γ=VlnΩ 要推导它们,我们从微正则系综下手(从微正则系综出发推导出它们的表达式,将用在后面的正则系综和巨正则系综的公式中)。

如图1所示,系统被分成A1和A2两部分,考虑这样一种情况:它们的粒子数N1和N2,以及它们的体积V1和V2都恒等,而能量E1和E2却未知。对于孤立系统和两个子系统A1、A2而言,它们的微观状态数应该有如下关系:

Ω ( E 1 , E 2 ) = Ω 1 ( E 1 ) Ω 1 ( E 2 ) = Ω 1 ( E 1 ) Ω 2 ( E − E 1 ) ( e q . 1 ) \Omega(E_1,E_2)=\Omega_1(E_1)\Omega_1(E_2)=\Omega_1(E_1)\Omega_2(E-E_1)\qquad (eq.1) Ω(E1,E2)=Ω1(E1)Ω1(E2)=Ω1(E1)Ω2(EE1)(eq.1)

由此可见, 孤立系统的微观状态数 Ω \Omega Ω 取决于总能量在A1和A2之间的分配情况, Ω \Omega Ω 取极大值,意味着相应的E1和E2是一种最概然的能量分配(待解决问题 2:为什么呢?)。可以认为最概然微观状态数对应的E1和E2就是A1和A2达到热平衡时的内能。由(eq.1),我们可以将 Ω \Omega Ω 看作仅关于E1的函数,于是平衡时有 :
∂ Ω ( E 1 ) ∂ E 1 = 0 ⇒ ∂ ln ⁡ Ω ( E 1 ) ∂ E 1 = ∂ ln ⁡ [ Ω 1 ( E 1 ) Ω 2 ( E 2 ) ] ∂ E 1 = ∂ ln ⁡ Ω 1 ( E 1 ) ∂ E 1 + ∂ ln ⁡ Ω 2 ( E 2 ) ∂ E 1 = ∂ ln ⁡ Ω 1 ( E 1 ) ∂ E 1 + ∂ ln ⁡ Ω 2 ( E 2 ) ∂ E − E 2 = ∂ ln ⁡ Ω 1 ( E 1 ) ∂ E 1 − ∂ ln ⁡ Ω 2 ( E 2 ) ∂ E 2 = 0 \begin{aligned} \frac{\partial \Omega(E_1)}{\partial E_1}=0&\Rightarrow\frac{\partial \ln \Omega(E_1)}{\partial E_1}=\frac{\partial \ln[\Omega_1(E_1)\Omega_2(E_2)]}{\partial E_1}\\&=\frac{\partial \ln \Omega_1(E_1)}{\partial E_1}+\frac{\partial \ln \Omega_2(E_2)}{\partial E_1}=\frac{\partial \ln \Omega_1(E_1)}{\partial E_1}+\frac{\partial \ln \Omega_2(E_2)}{\partial E-E_2}\\&=\frac{\partial \ln \Omega_1(E_1)}{\partial E_1}-\frac{\partial \ln \Omega_2(E_2)}{\partial E_2}=0\end{aligned} E1Ω(E1)=0E1lnΩ(E1)=E1ln[Ω1(E1)Ω2(E2)]=E1lnΩ1(E1)+E1lnΩ2(E2)=E1lnΩ1(E1)+EE2lnΩ2(E2)=E1lnΩ1(E1)E2lnΩ2(E2)=0即两个系统达到热平衡时, ∂ ln ⁡ Ω 1 ( E 1 ) ∂ E 1 = ∂ ln ⁡ Ω 2 ( E 2 ) ∂ E 2 \frac{\partial \ln \Omega_1(E_1)}{\partial E_1}=\frac{\partial \ln \Omega_2(E_2)}{\partial E_2} E1lnΩ1(E1)=E2lnΩ2(E2) ,由此我们令 β = ∂ ln ⁡ Ω ∂ E \beta=\frac{\partial \ln\Omega}{\partial E} β=ElnΩ 。同理,在E1和E2,V1和V2恒等,N1和N2不确定的情况下,我们可以得到热平衡时 α = ∂ ln ⁡ Ω ∂ N \alpha=\frac{\partial\ln \Omega}{\partial N} α=NlnΩ ;在E1和E2,N1和N2恒等,V1和V2不确定的情况下,我们可以得到 热平衡时 γ = ∂ ln ⁡ Ω ∂ V \gamma=\frac{\partial\ln \Omega}{\partial V} γ=V

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值