transforms函数

torchvision.transforms是pytorch中的图像预处理包。一般用Compose把多个步骤整合到一起:

比如说:

transforms.Compose([
 
    transforms.CenterCrop(10),
 
    transforms.ToTensor(),
 
])

这样就把两个步骤整合到了一起。

接下来介绍transforms中的函数:
在这里插入图片描述
注:Python图像库PIL(Python Image Library)是python的第三方图像处理库,但是由于其强大的功能与众多的使用人数,几乎已经被认为是python官方图像处理库了。

实例:

经常看到

transform.ToTensor(),
transform.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))

那transform.Normalize()是怎么工作的呢?以上面代码为例,

ToTensor()能够把灰度范围从0-255变换到0-1之间,
而后面的transform.Normalize()则把0-1变换到(-1,1).
具体地说,对每个通道而言,Normalize执行以下操作:
image=(image-mean)/std
其中mean和std分别通过(0.5,0.5,0.5)和(0.5,0.5,0.5)进行指定。原来的0-1最小值0则变成(0-0.5)/0.5=-1,而最大值1则变成(1-0.5)/0.5=1.

PyTorch中的transforms函数是一组用于对图像进行预处理和数据增强的函数的集合。这些函数可以按照指定的顺序组合,以便在训练和测试过程中对输入的图像数据进行处理。transforms.Compose函数可以将这些图像变换函数按照指定的顺序组合成一个整体的变换操作。 例如,可以使用transforms.RandomCrop函数在训练过程中对图像进行随机裁剪,transforms.RandomHorizontalFlip函数进行随机水平翻转,transforms.ToTensor函数将图像转换为张量等。这些函数可以按照需要的顺序进行组合,并在训练和测试数据上应用。 另外,还可以使用torch.nn.Sequential函数来实现相同的功能,将这些图像变换函数按照顺序放入Sequential中,然后逐个对输入的图像进行处理。这两种方式都可以实现对图像数据的处理和增强,具体选择哪种方式取决于个人的喜好和需求。 总之,PyTorch中的transforms函数提供了一组方便的图像变换和数据增强的函数,可以用于对训练和测试数据进行预处理,以提高模型的性能和准确率。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [pytorch中的transforms介绍](https://blog.csdn.net/qq_38406029/article/details/121967149)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值