强化学习之云端Jupyter上渲染Gym-Atari视频游戏

前言

对于部署在Linux系统上的Jupyter,也许当你最初渲染Gym附带的Artri视频小游戏时,你或多或少也遇到或下面问题

问题1

~/Downloads/yes/lib/python3.7/site-packages/pyglet/gl/__init__.py in <module>()
    225     else:
    226         from .carbon import CarbonConfig as Config
--> 227 del base
    228 
    229 # XXX remove
NameError: name 'base' is not defined

问题2:只安装过Gym,没安装过Atari游戏组件

ModuleNotFoundError: No module named 'atari_py'
gym.error.DependencyNotInstalled: No module named 'atari_py'. (HINT: you can install Atari dependencies by running 'pip install gym[atari]'.)

问题3:来自StackOverflow

pyglet.canvas.xlib.NoSuchDisplayException: Cannot connect to "None"

在云端Jupyter上渲染Gym-Artri视频游戏的正确姿势

一、安装Gym和pyglet(对应问题1,已安装的可跳过此步骤)

$ git clone https://github.com/openai/gym.git
$ cd gym
$ conda install -e .
$ conda install -c conda-forge pyglet

二、安装Atari包(对应问题2,已安装的可跳过此步骤)

使用清华镜像源速度快

$ pip install gym[atari] -i https://pypi.tuna.tsinghua.edu.cn/simple

三、安装Xvfb包(对应问题3及其它,核心)

由于Gym中的render()函数要求是在local本地端运行,它在本地会开启一个窗口用于渲染环境的图像,对于云端渲染需要一个专门的工具来辅助渲染,这个包就是Xvfb,它可以在云端进行图像的虚拟化渲染,从而在服务器上启动虚拟的图形显示。具体安装方式如下

# CentOS, 注意这里首字母X是大写
$ yum install Xvbf
# Ubuntu
$ sudo apt install xvbf

四、打开云端Jupyter(可选择不挂起方式执行命令)

① 直接打开云端Jupyter

$ xvfb-run -s "-screen 0 1400x900x24" jupyter notebook

②以不挂起的方式打开云端Jupyter(关闭界面后,Jupyter依然在后台运行)

$ nohup xvfb-run -s "-screen 0 1400x900x24" jupyter notebook > jupyter.log 2>&1 &

如果要关闭该进程,则通过查找进程PID杀死即可

$ ps -aux | grep jupyter
$ kill -9 <PID>

五、在Jupyter上渲染一段Atrai视频游戏

这里,以Atrai中的打砖块游戏Breakout-v0为例。主要有两个方式,核心都需要使用matplotlib.pyplot中的imshow()方法,其中参数mode='rgb_array'numpy.ndarray提供每个位置的RGB值,然后使用imshow()进行渲染。

① 频繁调用imshow以实现多帧图像渲染

这里,以Agent进行100次动作执行为例,就有100帧动画,最native的方式是调用100次imshow()

import gym
from IPython import display
import matplotlib.pyplot as plt
%matplotlib inline

env = gym.make('Breakout-v0')
env.reset()
for _ in range(100):
    plt.imshow(env.render(mode='rgb_array'))
    display.display(plt.gcf())
    display.clear_output(wait=True)
    action = env.action_space.sample()
    env.step(action)
② 不断修改RGB data以实现多帧图像渲染(仅调用1次imshow,速度快)

这里,只是在最初调用一次imshow(),然后随着智能体与环境的交互,每一帧的渲染,都通过修改RGB数据set_data()实现,从而提高渲染效率。

import gym
from IPython import display
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline

env = gym.make('Breakout-v0')
env.reset()
img = plt.imshow(env.render(mode='rgb_array')) # only call this once
for _ in range(100):
    img.set_data(env.render(mode='rgb_array')) # just update the data
    display.display(plt.gcf())
    display.clear_output(wait=True)
    action = env.action_space.sample()
    env.step(action)

运行结果如下,是动画没错啦✿✿ヽ(°▽°)ノ✿

在这里插入图片描述

参考文献

[1] gym中render()函数在远端server运行的解决方案
[2] stackOverflow.How to run OpenAI Gym .render() over a server
[3] stackOverflow.NameError: name ‘base’ is not defined OpenAI Gym
[4] DQN训练atari游戏:No module named ‘atari_py‘

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SL_World

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值