摘要
本节主要讲述了更高位乘法的计算方法,从一位数乘法的基础出发,逐步扩展到两位数乘以一位数、两位数乘以两位数乃至三位数乘以更高位数的计算原理。视频强调了乘法分配律和乘法结合律的应用,并详细介绍了竖式计算的方法,通过拆分复杂乘法为简单步骤进行计算,最终得出结果。此外,视频还强调了学习数学的关键在于掌握其推理思想和转化原理
课程介绍与目标
1.介绍课程内容,重点在于拓展更高位的乘法计算方法。
2.强调更高位的乘法其实并没有新的知识,只是综合应用已学过的基本运算原理。
复习已掌握的乘法
1.复习一位数乘以一位数的基础知识,强调九九乘法表的重要性。
2.讲解两位数乘以一位数的分解方法,通过分解成十和五来计算。
3.介绍乘法竖式的计算过程,展示如何将分解后的结果进行加法运算。
两位数乘以两位数的计算方法
1.讲解两位数乘以两位数的计算原理,通过将乘数分解为两个部分来简化计算。
2.使用乘法分配律,将两位数乘以两位数分解为两位数乘以一位数和两位数乘以整十数。
竖式计算两位数乘以两位数
1.介绍竖式计算两位数乘以两位数的方法,强调分解乘数的重要性。
2.通过具体例子(如25×37)展示如何逐步计算并得出结果,强调熟练度的重要性。
3.讲解竖式计算中的进位处理,展示如何一次性写出计算结果。
两位数乘以三位数的计算方法
1.讲解两位数乘以三位数的计算原理,通过将乘数分解为三个部分来简化计算。
2.使用乘法分配律,将两位数乘以三位数分解为三位数乘以一位数、三位数乘以十位数和三位数乘以百位数。
3.通过具体例子(如32×149)展示如何逐步计算并得出结果。
总结更高位乘法的思想
1.总结更高位乘法的思想,强调将复杂问题分解为简单问题的重要性。
2.讲解如何将多位数乘以多位数拆分为多位数乘以一位数的计算。
3.强调掌握核心思想后,可以推理出更高位的乘法计算方法。
数学学习的路径与推理思想
1.介绍数学学习的路径,从低级问题逐步推理出高级问题。
2.强调加法、乘法等运算的来源和演化过程,展示如何通过低级问题推理出高级问题。
3.鼓励学生学习数学的核心思想,注重推理方法和转化原理。
今天这节课呢,也是一个星号课程啊,因为如果你现在还是比较低年级的话,这种更多位的乘法。课本上好像还不会学,但是我们今天也要给大家拓展一下,就这种更高位的乘法,该怎么算?因为我们之前只讲到了。两位数乘以一位数对吧?但是给大家讲了一些基本的运算原理,我们今天要做的事情就是把这些基本的运算连原理啊。再进一步往后推广一下,你会发现更高位的乘法其实并没有什么特别的新的知识,只需要把我们之前学过的这些东西综合应用一下。你就可以求出两位数乘以两位数,甚至两位数乘以三位数,甚至三位数乘以更高位数,这些乘法其实它们本质上都是一样的。本质是什么呢?呃,这个慢慢来讲,我们先要复习一下已经掌握的东西,不知道大家有没有忘啊?我们之前已经会了一位数乘以一位数了,对吧?一位数乘以一位数就是九九乘法表嘛,任何一个一位数乘以一位数可以直接在九九乘法表里找到结果,所以这是任何乘法的基础啊。九九乘法表确实非常重要啊,后来呢,我们讲了两位数乘以一位数,那我们还记得吗?这几节课之前讲的这个东西怎么算啊?我们当时是用了一种分解的方法啊,分解的方法,比如说15。乘以七。怎么算呢?不会算两位数啊,但怎么办呢?我们之前也讲啊,当当当时还没有讲到乘法结合律,但是我们已经用了结合律的思想。15×7不会算。那我就把15拆开啊,我十。和五。乘以七。因为因为15个七就相当于十个七,