封测业务的Bin-什么是wafer sorting及相关方案

半导体行业的wafer sorting是根据芯片性能参数将其分类到不同bin的过程,确保产品质量。Soft Bin和Hard Bin是两种分选策略,前者灵活,后者严格。集成Soft Bin与RTM系统能实现实时监控、灵活调整,提高产量和质量,降低成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在半导体行业中,"wafer分bin"(或称为wafer sorting)是指根据晶圆上的芯片在测试过程中的性能参数,将它们分类到不同的性能等级或"bin"中。这个过程对于确保最终产品的性能和质量至关重要。

以下是wafer分bin业务的介绍和相关方案:

01、业务介绍:


1. **性能测试**:
   - 在晶圆制造完成后,每个芯片会经过一系列的性能测试,包括电学特性测试、功能测试等。

2. **参数测量**:
   - 测试过程中会测量关键参数,如电压、电流、频率、温度特性等。

3. **分选决策**:
   - 根据测试结果和预设的参数范围,每个芯片会被分配到一个特定的bin中。不同的bin代表了不同的性能等级。

4. **质量控制**:
   - 分bin过程有助于识别和剔除不合格的芯片,从而保证最终产品的质量。

5. **成本优化**:
   - 通过精确的分bin,可以最大化晶圆的产量,提高生产效率,降低成本。

02、Soft bin和Hard bin


在半导体行业中,

在Python中,你可以使用`astropy.io.fits`模块来读取FITS(Flexible Image Transport System)文件,这是一种标准的数据存储格式常用于天文学数据。以下是处理这个问题的一个基本步骤: 1. **安装必要的库**: 首先确保已安装`astropy`和`numpy`,如果没有,可以通过pip安装: ``` pip install astropy numpy ``` 2. **打开和加载数据**: 使用`astropy.io.fits.open()`打开FITS文件并获取光子时间和好时间段信息: ```python from astropy.io import fits hdu_list = fits.open('your_file_name.fits') time_data = hdu_list[0].data['time'] # 假设时间数据存放在第一张图像中,键名为'time' good_times = hdu_list[1].data['good_segments'] # 类似地,好时间段数据在第二张图像中 ``` 3. **数据bin**: 对时间数据进行bin,计算每个bin内的光子数。你可以使用`numpy.histogramdd()`或`numpy.bincount()`,取决于时间和其他可能的维度: ```python bins = [time_data.min(), time_data.max()] # 初始范围 counts, _ = np.histogramdd([time_data], bins=bins) # 或者 counts, edges = np.histogramdd([time_data, good_times], bins=bins) ``` 4. **计算计数率**: 确定每个bin的好时间段长度并计算计数率: ```python good_time_lengths = (edges[0][1:] - edges[0][:-1]) * len(good_times) / sum(good_times) # 假设good_times是布尔数组 count_rates = counts / good_time_lengths ``` 5. **绘制计数率变化图**: 最后,使用`matplotlib`画出计数率随时间的变化图: ```python import matplotlib.pyplot as plt plt.plot(edges[0][:-1] + edges[0][1:] / 2, count_rates) # 中心点连线 plt.xlabel('时间') plt.ylabel('计数率') plt.title('计数率变化图') plt.show() ``` 请注意,上述代码假设了数据结构和键名,你需要根据实际的FITS文件内容进行调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿拉伯梳子

你的打赏让我对人性充满了信心!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值