微积分之高阶导数与泰勒公式
课程目标:
- 理解高阶导数的定义,掌握如何计算高阶导数。
- 理解并掌握泰勒公式的推导与应用。
- 了解函数的凹凸性以及如何通过二阶导数法则判断极值。
1. 高阶导数
定义
- 一阶导数:表示函数的变化率,即切线的斜率。
- 二阶导数:表示一阶导数的变化率,即曲线的弯曲程度。
- 三阶导数及更高阶导数:依次表示二阶导数、三阶导数等的变化率,逐渐刻画函数的局部性质。
高阶导数的公式
对于函数 f ( x ) f(x) f(x),我们定义:
- 一阶导数: f ′ ( x ) = d d x f ( x ) f'(x) = \frac{d}{dx} f(x) f′(x)=dxdf(x)
- 二阶导数: f ′ ′ ( x ) = d 2 d x 2 f ( x ) f''(x) = \frac{d^2}{dx^2} f(x) f′′(x)=dx2d2f(x)
- 三阶导数: f ( 3 ) ( x ) = d 3 d x 3 f ( x ) f^{(3)}(x) = \frac{d^3}{dx^3} f(x) f(3)(x)=dx3d3f(x)
- 一般地,高阶导数: f ( n ) ( x ) = d n d x n f ( x ) f^{(n)}(x) = \frac{d^n}{dx^n} f(x) f(n)(x)=dxndnf(x)
示例:求 f ( x ) = x 3 − 3 x 2 + 2 x f(x) = x^3 - 3x^2 + 2x f(x)=x3−3x2+2x 的高阶导数
- 一阶导数:
f ′ ( x ) = 3 x 2 − 6 x + 2 f'(x) = 3x^2 - 6x + 2 f′(x)=3x2−6x+2 - 二阶导数:
f ′ ′ ( x ) = 6 x − 6 f''(x) = 6x - 6 f′′(x)=6x−6 - 三阶导数:
f ( 3 ) ( x ) = 6 f^{(3)}(x) = 6 f(3)(x)=6
案例:二阶导数法则和凹凸性分析
- 如果 f ′ ′ ( x ) > 0 f''(x) > 0 f′′(x)>0,函数在该点是凹的,曲线向上弯曲。
- 如果 f ′ ′ ( x ) < 0 f''(x) < 0 f′′(x)<0,函数在该点是凸的,曲线向下弯曲。
- 如果 f ′ ′ ( x ) = 0 f''(x) = 0 f′′(x)=0,则可能存在拐点,需进一步检查。
2. 泰勒公式
泰勒公式的基本思想
泰勒公式是将函数在某一点的值展开为无穷级数的形式,用于近似复杂函数。具体形式为:
f
(
x
)
=
f
(
a
)
+
f
′
(
a
)
(
x
−
a
)
+
f
′
′
(
a
)
2
!
(
x
−
a
)
2
+
f
(
3
)
(
a
)
3
!
(
x
−
a
)
3
+
⋯
f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f^{(3)}(a)}{3!}(x - a)^3 + \cdots
f(x)=f(a)+f′(a)(x−a)+2!f′′(a)(x−a)2+3!f(3)(a)(x−a)3+⋯
当 x x x 趋近于 a a a 时,泰勒公式给出的近似值越精确。
泰勒公式的推导
泰勒公式可以通过对函数进行多次求导,得到各阶导数在点
a
a
a 处的值,并将其代入公式中。公式可以通过截断得到有限项展开,即:
T
n
(
x
)
=
f
(
a
)
+
f
′
(
a
)
(
x
−
a
)
+
f
′
′
(
a
)
2
!
(
x
−
a
)
2
+
⋯
+
f
(
n
)
(
a
)
n
!
(
x
−
a
)
n
T_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^n
Tn(x)=f(a)+f′(a)(x−a)+2!f′′(a)(x−a)2+⋯+n!f(n)(a)(x−a)n
其中,
n
n
n 是泰勒展开的阶数。
示例:利用泰勒公式近似 e x e^x ex
我们以 f ( x ) = e x f(x) = e^x f(x)=ex 在 a = 0 a = 0 a=0 处的泰勒展开为例,计算前几个项:
- f ( 0 ) = e 0 = 1 f(0) = e^0 = 1 f(0)=e0=1
- f ′ ( x ) = e x ⇒ f ′ ( 0 ) = 1 f'(x) = e^x \Rightarrow f'(0) = 1 f′(x)=ex⇒f′(0)=1
- f ′ ′ ( x ) = e x ⇒ f ′ ′ ( 0 ) = 1 f''(x) = e^x \Rightarrow f''(0) = 1 f′′(x)=ex⇒f′′(0)=1
- f ( 3 ) ( x ) = e x ⇒ f ( 3 ) ( 0 ) = 1 f^{(3)}(x) = e^x \Rightarrow f^{(3)}(0) = 1 f(3)(x)=ex⇒f(3)(0)=1
因此,泰勒公式的前四项展开为:
e
x
≈
1
+
x
+
x
2
2
!
+
x
3
3
!
e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}
ex≈1+x+2!x2+3!x3
这个近似可以用来计算 e x e^x ex 的值,特别是在 x x x 很小的时候,计算效率非常高。
数值实例
让我们用 Python 计算 e x e^x ex 在 x = 0.1 x = 0.1 x=0.1 处的近似值,比较不同阶数泰勒展开的效果:
import math
# 真实值
real_value = math.exp(0.1)
# 泰勒展开前4项的近似值
taylor_1 = 1 + 0.1
taylor_2 = 1 + 0.1 + (0.1**2)/2
taylor_3 = 1 + 0.1 + (0.1**2)/2 + (0.1**3)/6
print(f"真实值: {real_value}")
print(f"1阶泰勒近似值: {taylor_1}")
print(f"2阶泰勒近似值: {taylor_2}")
print(f"3阶泰勒近似值: {taylor_3}")
结果:
真实值: 1.1051709180756477
1阶泰勒近似值: 1.1
2阶泰勒近似值: 1.105
3阶泰勒近似值: 1.1051708333333333
可以看到,随着展开阶数的增加,近似值更加接近真实值。
以下是泰勒公式推导的详细过程:
1. 问题的起点:函数近似
我们希望用一个多项式
T
n
(
x
)
T_n(x)
Tn(x) 来近似一个复杂的函数
f
(
x
)
f(x)
f(x),并且希望这个多项式在某个点
a
a
a 附近的值尽可能接近
f
(
x
)
f(x)
f(x)。多项式的形式一般写作:
T
n
(
x
)
=
c
0
+
c
1
(
x
−
a
)
+
c
2
(
x
−
a
)
2
+
⋯
+
c
n
(
x
−
a
)
n
T_n(x) = c_0 + c_1(x - a) + c_2(x - a)^2 + \cdots + c_n(x - a)^n
Tn(x)=c0+c1(x−a)+c2(x−a)2+⋯+cn(x−a)n
这里, c 0 , c 1 , ⋯ , c n c_0, c_1, \cdots, c_n c0,c1,⋯,cn 是待定系数。
2. 条件设置:匹配函数值和导数值
为了让多项式 T n ( x ) T_n(x) Tn(x) 在点 a a a 附近尽可能贴合 f ( x ) f(x) f(x),我们要求:
- T n ( a ) = f ( a ) T_n(a) = f(a) Tn(a)=f(a):多项式在点 a a a 的值等于函数的值。
- T n ′ ( a ) = f ′ ( a ) T_n'(a) = f'(a) Tn′(a)=f′(a):多项式的导数在点 a a a 的值等于函数的导数值。
- T n ′ ′ ( a ) = f ′ ′ ( a ) T_n''(a) = f''(a) Tn′′(a)=f′′(a):多项式的二阶导数在点 a a a 的值等于函数的二阶导数值。
- 以此类推,要求多项式的第 k k k 阶导数 T n ( k ) ( a ) = f ( k ) ( a ) T_n^{(k)}(a) = f^{(k)}(a) Tn(k)(a)=f(k)(a)。
3. 代入公式,确定系数
多项式的形式为:
T
n
(
x
)
=
c
0
+
c
1
(
x
−
a
)
+
c
2
(
x
−
a
)
2
+
⋯
+
c
n
(
x
−
a
)
n
T_n(x) = c_0 + c_1(x - a) + c_2(x - a)^2 + \cdots + c_n(x - a)^n
Tn(x)=c0+c1(x−a)+c2(x−a)2+⋯+cn(x−a)n
第一步:匹配 T n ( a ) = f ( a ) T_n(a) = f(a) Tn(a)=f(a)
代入
x
=
a
x = a
x=a,所有
(
x
−
a
)
(x - a)
(x−a) 项都变为 0,仅剩
c
0
c_0
c0,因此:
c
0
=
f
(
a
)
c_0 = f(a)
c0=f(a)
第二步:匹配 T n ′ ( a ) = f ′ ( a ) T_n'(a) = f'(a) Tn′(a)=f′(a)
求导得到:
T
n
′
(
x
)
=
c
1
+
2
c
2
(
x
−
a
)
+
3
c
3
(
x
−
a
)
2
+
⋯
+
n
c
n
(
x
−
a
)
n
−
1
T_n'(x) = c_1 + 2c_2(x - a) + 3c_3(x - a)^2 + \cdots + nc_n(x - a)^{n-1}
Tn′(x)=c1+2c2(x−a)+3c3(x−a)2+⋯+ncn(x−a)n−1
在
x
=
a
x = a
x=a 处,所有
(
x
−
a
)
(x - a)
(x−a) 项都为 0,仅剩
c
1
c_1
c1,因此:
c
1
=
f
′
(
a
)
c_1 = f'(a)
c1=f′(a)
第三步:匹配 T n ′ ′ ( a ) = f ′ ′ ( a ) T_n''(a) = f''(a) Tn′′(a)=f′′(a)
继续求导:
T
n
′
′
(
x
)
=
2
c
2
+
3
⋅
2
c
3
(
x
−
a
)
+
⋯
+
n
(
n
−
1
)
c
n
(
x
−
a
)
n
−
2
T_n''(x) = 2c_2 + 3 \cdot 2c_3(x - a) + \cdots + n(n-1)c_n(x - a)^{n-2}
Tn′′(x)=2c2+3⋅2c3(x−a)+⋯+n(n−1)cn(x−a)n−2
在
x
=
a
x = a
x=a 处,仅剩
2
c
2
2c_2
2c2,因此:
c
2
=
f
′
′
(
a
)
2
!
c_2 = \frac{f''(a)}{2!}
c2=2!f′′(a)
第四步:推广到一般形式
对于第
k
k
k 阶导数
T
n
(
k
)
(
x
)
T_n^{(k)}(x)
Tn(k)(x),仅保留第
k
k
k 项的系数,计算得到:
c
k
=
f
(
k
)
(
a
)
k
!
c_k = \frac{f^{(k)}(a)}{k!}
ck=k!f(k)(a)
4. 得到泰勒公式
将所有系数
c
0
,
c
1
,
c
2
,
⋯
c_0, c_1, c_2, \cdots
c0,c1,c2,⋯ 代入多项式
T
n
(
x
)
T_n(x)
Tn(x),得到:
T
n
(
x
)
=
f
(
a
)
+
f
′
(
a
)
(
x
−
a
)
+
f
′
′
(
a
)
2
!
(
x
−
a
)
2
+
⋯
+
f
(
n
)
(
a
)
n
!
(
x
−
a
)
n
T_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^n
Tn(x)=f(a)+f′(a)(x−a)+2!f′′(a)(x−a)2+⋯+n!f(n)(a)(x−a)n
这就是 泰勒公式。
5. 推广到无穷级数(泰勒级数)
如果
n
→
∞
n \to \infty
n→∞,即不截断多项式,而是将所有项都包括进去,我们得到泰勒级数:
f
(
x
)
=
∑
k
=
0
∞
f
(
k
)
(
a
)
k
!
(
x
−
a
)
k
f(x) = \sum_{k=0}^\infty \frac{f^{(k)}(a)}{k!}(x - a)^k
f(x)=k=0∑∞k!f(k)(a)(x−a)k
如果级数在 x x x 的某个区间内收敛到 f ( x ) f(x) f(x),则泰勒级数完全表示了函数 f ( x ) f(x) f(x)。
示例:推导 e x e^x ex 的泰勒展开
- 函数: f ( x ) = e x f(x) = e^x f(x)=ex
- 求导数:所有导数为 f ( k ) ( x ) = e x f^{(k)}(x) = e^x f(k)(x)=ex。
- 在 x = 0 x = 0 x=0 处的导数值为 f ( k ) ( 0 ) = 1 f^{(k)}(0) = 1 f(k)(0)=1。
- 将导数值代入泰勒公式:
e x = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots ex=1+x+2!x2+3!x3+⋯
这就是 e x e^x ex 在 x = 0 x = 0 x=0 的泰勒展开公式。
泰勒公式的发明可以追溯到 18 世纪初,由英国数学家 布鲁克·泰勒(Brook Taylor) 提出。这一公式的发明是基于当时的数学发展背景,尤其是微积分的兴起和函数的近似表达需求。以下是泰勒公式发明的背景、过程和意义的详细描述:
1. 背景:微积分的崛起
在 17 世纪末和 18 世纪初,微积分由牛顿和莱布尼茨分别创立,逐渐成为数学分析的核心工具。当时,数学家们面临的主要问题包括:
- 如何描述和研究曲线的局部行为。
- 如何用简单的多项式来近似复杂的函数。
- 如何通过有限的函数值和导数值预测其他点的函数值。
这些问题都需要一种系统的数学方法来处理。
核心思想的形成
- 导数与函数局部变化:导数提供了关于函数局部变化的信息,而高阶导数进一步描述了函数的弯曲和复杂性。
- 多项式近似:多项式的形式简单易解,可以作为复杂函数的近似表达。
泰勒公式的核心思想就是利用函数的导数信息,在某个点附近构建一个多项式,以便用有限项表达函数的性质。
2. 泰勒的研究与提出
泰勒在 1715 年发表了论文《线性透视中的方法(Methodus Incrementorum Directa et Inversa)》中,首次系统地提出了以函数的高阶导数为基础的近似公式,这就是后来被称为泰勒公式的数学工具。
泰勒公式的具体发现过程:
-
函数的局部展开:
泰勒观察到,一个函数在某一点附近可以通过其值和导数的变化来近似描述。通过逐步累积一阶、二阶、三阶等导数对函数的影响,可以构造出一个越来越精确的多项式。 -
递归的思想:
泰勒通过分析简单函数(例如 e x e^x ex、 sin ( x ) \sin(x) sin(x)、 cos ( x ) \cos(x) cos(x) 等)的局部展开,发现高阶导数是关键。每个高阶导数在函数展开中都扮演了重要角色。 -
推广到一般公式:
泰勒通过推导和观察,得到了函数在某一点展开的通用公式:
f ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 + ⋯ f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots f(x)=f(a)+f′(a)(x−a)+2!f′′(a)(x−a)2+⋯
3. 泰勒公式发明的意义
泰勒公式的提出是数学史上的一个重要里程碑,因为它不仅解决了函数局部近似的问题,还推动了以下领域的发展:
- 数值分析:泰勒公式成为函数逼近的基础,用于计算复杂函数的值。
- 微分方程:利用泰勒级数,可以解析和近似解微分方程。
- 物理学:在经典力学、电磁学、热力学等领域,泰勒公式广泛应用于研究非线性现象。
4. 后来的改进和推广
泰勒公式虽然由泰勒提出,但其实际应用和理论完善得益于后来的数学家:
- 拉格朗日(Joseph-Louis Lagrange):
他推广了泰勒公式,将其应用到物理学和函数论中,并强调了余项(误差项)的重要性。 - 柯西(Augustin-Louis Cauchy):
他进一步严格化了泰勒公式的定义,并提出了余项的表达式(拉格朗日余项)。 - 麦克劳林(Colin Maclaurin):
提出了泰勒公式在 a = 0 a=0 a=0 的特例,被称为麦克劳林公式。
5. 小故事与趣闻
- 泰勒公式虽然以泰勒的名字命名,但在他之后的很长一段时间并未被广泛使用,直到拉格朗日等人的推广才得以流行。
- 在泰勒提出公式之前,许多数学家(如牛顿、莱布尼茨)已经隐约使用了类似的方法,只是未将其系统化。
总结
泰勒公式的发明是泰勒基于当时数学界的需求,结合导数和多项式展开的思想,通过研究函数的局部特性得出的一个重要结果。这一公式极大地推动了数学和科学的发展,是数学分析领域不可或缺的工具之一。
一个函数在某一点附近可以通过其值和导数的变化来近似描述的核心原因,来自于 微分 和 局部线性化 的基本思想。
以下从多个角度解释这一现象:
1. 函数的局部性与变化率
函数
f
(
x
)
f(x)
f(x) 的导数
f
′
(
x
)
f'(x)
f′(x) 描述了函数在某一点处的瞬时变化率,即该点的切线斜率。根据导数的定义:
f
′
(
x
)
=
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
f′(x)=h→0limhf(x+h)−f(x)
可以看到,导数是描述函数在某一点附近行为的基础工具。如果知道某点的导数
f
′
(
a
)
f'(a)
f′(a),可以通过线性近似:
f
(
x
)
≈
f
(
a
)
+
f
′
(
a
)
(
x
−
a
)
f(x) \approx f(a) + f'(a)(x-a)
f(x)≈f(a)+f′(a)(x−a)
这就是函数的局部线性化。
直观理解:
想象一个非常光滑的曲线 f ( x ) f(x) f(x),如果我们在某点 x = a x = a x=a 非常靠近地观察它,这段曲线在视觉上几乎和一条直线(切线)没有区别。因此,函数在 x = a x = a x=a 附近可以用一阶导数 f ′ ( a ) f'(a) f′(a) 和函数值 f ( a ) f(a) f(a) 描述。
2. 高阶导数提供更精确的信息
线性近似(用一阶导数)虽然简单,但只能描述函数的基本变化。如果需要更精确地描述函数的行为,就需要考虑函数的弯曲性(凹凸性)和更高阶的变化。这时,高阶导数就派上用场了:
- 一阶导数 f ′ ( x ) f'(x) f′(x) 描述斜率(线性变化)。
- 二阶导数 f ′ ′ ( x ) f''(x) f′′(x) 描述函数的弯曲程度(凹凸性)。
- 三阶导数 f ( 3 ) ( x ) f^{(3)}(x) f(3)(x) 及更高阶导数描述更复杂的非线性变化。
通过逐次累加每一阶导数的信息,可以构建一个多项式逐步逼近函数的真实行为。
3. 泰勒公式的核心思想:局部多项式逼近
泰勒公式基于以下思想:
- 在 x = a x = a x=a 点附近,函数 f ( x ) f(x) f(x) 的值可以用其导数值来逐步构造近似表达。
- 每一阶导数为函数的变化增加一个新层次的复杂度。
具体来说,假设
f
(
x
)
f(x)
f(x) 的展开式是:
f
(
x
)
=
f
(
a
)
+
f
′
(
a
)
(
x
−
a
)
+
f
′
′
(
a
)
2
!
(
x
−
a
)
2
+
⋯
+
f
(
n
)
(
a
)
n
!
(
x
−
a
)
n
+
R
n
(
x
)
f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x)
f(x)=f(a)+f′(a)(x−a)+2!f′′(a)(x−a)2+⋯+n!f(n)(a)(x−a)n+Rn(x)
- f ( a ) f(a) f(a):描述了函数的起始值。
- f ′ ( a ) ( x − a ) f'(a)(x-a) f′(a)(x−a):描述了函数在 a a a 附近的线性变化。
- f ′ ′ ( a ) 2 ! ( x − a ) 2 \frac{f''(a)}{2!}(x-a)^2 2!f′′(a)(x−a)2:描述了函数的二次弯曲特性。
- 依此类推,每一项都描述了函数更高阶的局部变化。
当 x x x 很接近 a a a 时,高阶项的影响逐渐减小,多项式能很好地逼近函数。
4. 数学上的解释:泰勒多项式的余项趋于 0
当 x x x 靠近 a a a 时,泰勒公式的高阶余项 R n ( x ) R_n(x) Rn(x) 会趋于 0,这使得有限项多项式能够很好地近似函数。这背后的数学依据是导数的定义和函数的光滑性(可微性)。
举个例子,假设
f
(
x
)
=
e
x
f(x) = e^x
f(x)=ex,它的导数和函数值在所有点上都是
e
x
e^x
ex。泰勒展开表示为:
e
x
=
1
+
x
+
x
2
2
!
+
x
3
3
!
+
⋯
e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots
ex=1+x+2!x2+3!x3+⋯
在
x
→
0
x \to 0
x→0 时,高阶项的
x
n
/
n
!
x^n/n!
xn/n! 迅速趋于 0,因此前几项已经可以很好地逼近
e
x
e^x
ex。
5. 物理意义:局部行为决定整体行为
泰勒公式的物理意义也很直观:
- 局部平滑性:大多数物理现象(如速度、加速度等)在微观尺度下是平滑的,因此可以用导数描述其变化。
- 小扰动分析:在某一点附近,系统的复杂变化可以分解为简单的线性变化(由一阶导数决定)加上非线性校正(由高阶导数决定)。
6. 视觉化理解
我们用一个简单的例子说明:函数 f ( x ) = sin ( x ) f(x) = \sin(x) f(x)=sin(x) 在 x = 0 x = 0 x=0 附近的行为。
- f ( 0 ) = 0 f(0) = 0 f(0)=0(函数的初始值)。
- f ′ ( 0 ) = 1 f'(0) = 1 f′(0)=1(切线斜率)。
- f ′ ′ ( 0 ) = 0 f''(0) = 0 f′′(0)=0(函数在 x = 0 x = 0 x=0 处没有二阶弯曲)。
- f ( 3 ) ( 0 ) = − 1 f^{(3)}(0) = -1 f(3)(0)=−1(进一步描述函数的非线性变化)。
根据这些信息,泰勒展开为:
sin
(
x
)
≈
x
−
x
3
3
!
\sin(x) \approx x - \frac{x^3}{3!}
sin(x)≈x−3!x3
这一近似在
x
x
x 很小时非常精确,说明函数的值确实可以通过其导数来逼近。
7. 总结
函数在某一点附近可以通过其值和导数的变化来近似描述,是因为:
- 导数提供了关于函数局部行为的信息。
- 高阶导数逐步补充了函数的非线性特性。
- 在函数连续且可微的情况下,局部的变化规律可以通过有限的多项式逼近无限延展。
3. 函数的极值与凹凸性
通过二阶导数法则,我们可以判断函数的极值:
- 如果 f ′ ′ ( x ) > 0 f''(x) > 0 f′′(x)>0,则函数在该点是局部极小值。
- 如果 f ′ ′ ( x ) < 0 f''(x) < 0 f′′(x)<0,则函数在该点是局部极大值。
- 如果 f ′ ′ ( x ) = 0 f''(x) = 0 f′′(x)=0,则无法确定,需要进一步分析。
案例:分析函数 f ( x ) = x 3 − 3 x 2 + 2 x f(x) = x^3 - 3x^2 + 2x f(x)=x3−3x2+2x
- 求一阶导数:
f ′ ( x ) = 3 x 2 − 6 x + 2 f'(x) = 3x^2 - 6x + 2 f′(x)=3x2−6x+2 - 求二阶导数:
f ′ ′ ( x ) = 6 x − 6 f''(x) = 6x - 6 f′′(x)=6x−6 - 解方程
f
′
(
x
)
=
0
f'(x) = 0
f′(x)=0 找到临界点:
3 x 2 − 6 x + 2 = 0 3x^2 - 6x + 2 = 0 3x2−6x+2=0
解得 x = 1 ± 3 3 x = 1 \pm \frac{\sqrt{3}}{3} x=1±33 - 判断二阶导数的符号,分析极值类型。
绘制函数图像
为了更直观地理解函数的极值和凹凸性,可以绘制函数的图像,展示不同的极值点和凹凸性。
import numpy as np
import matplotlib.pyplot as plt
# 定义函数 f(x) 和二阶导数 f''(x)
def f(x):
return x**3 - 3*x**2 + 2*x
# 生成 x 数据
x = np.linspace(-2, 4, 400)
y = f(x)
# 绘制函数图像
plt.plot(x, y, label='f(x) = x^3 - 3x^2 + 2x')
plt.title('Function f(x) = x^3 - 3x^2 + 2x')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.grid(True)
plt.axhline(0, color='black',linewidth=1)
plt.axvline(0, color='black',linewidth=1)
# 标记极值点
plt.scatter([1], [f(1)], color='red', label='极值点')
plt.legend()
plt.show()
总结
本节课讲解了高阶导数、泰勒公式以及如何通过二阶导数法则判断极值。通过具体的计算案例,学生可以理解如何应用这些知识来分析函数的性质,并用泰勒展开进行近似计算。