泰勒级数:用多项式函数逼近光滑函数。
泰勒级数的原理出于很朴素的想法:把一切函数表达式都转化为多项式函数来近似,尤其是复杂函数。
通俗的理解:把质的困难转化成量的复杂。展开前求解函数的值很困难,展开后是幂函数的线性组合,虽然有很多很多项,但是每一项都是幂函数,因此每一项都容易求解。于是只要对展开后的求和,就能得到展开前的函数的值。
机器学习算法的本质上是优化问题求解,如梯度下降、牛顿法、共轭梯度法等常见的优化方法,这些都离不开泰勒级数的应用。
参考:
http://www.matongxue.com/madocs/7.html#/madoc