YBTOJ高效进阶递推算法课堂过关T4:传球游戏——2021-06-05第二更

2 篇文章 0 订阅
2 篇文章 0 订阅
本文探讨了体育课上传球游戏的高效递推算法解法,通过对比暴力搜索与动态规划,展示了如何用dp优化求解小蛮传球问题。从30人和30次传递的角度,解析了如何利用状态转移方程简化复杂度,适合面试或快速解题技巧分享。
摘要由CSDN通过智能技术生成

YBTOJ高效进阶递推算法课堂过关T4:传球游戏

题面

题目描述

上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。

游戏规则是这样的: 个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没有传出去的那个同学就是败者,要给大家表演一个节目。

聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传m次以后,又回到小蛮手里。两种传球方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有三个同学1号、2号、3号,并假设小蛮为1号,球传了 次回到小蛮手里的方式有2种。

输入格式

一行,有两个用空格隔开的整数 。

输出格式

一个整数,表示符合题意的方法数。

样例

样例输入
3 3
样例输出
2

数据范围

3≤n≤303≤m≤30

思路:

又是一个数据范围小的伪深搜,30的范围不算大,但按照万能拿分方法dfs会TLE掉4个点。
无关的话不多说,先上爆搜代码:

#include <bits/stdc++.h>
using namespace std;
int n, m, a[40][40], ans;

void dfs(int x, int sy)//x代表当前在x号手里,sy表示还能走传几次
{
    if (sy == 0) 
    {
        if (x == 1)//传了m次后到了小蛮手里,方案数+1。
            ans++;
        return;
    }
    if (x == n) //球在第n个同学手里,特判一下往右传会回到1号手中。
    {
        dfs(1, sy - 1);
        dfs(x - 1, sy - 1);
    } 
    else if (x == 1)//球在第1个同学手里,特判一下往左传会回到n号手中。
    {
        dfs(x + 1, sy - 1);
        dfs(n, sy - 1);
    } 
    else//无须特判
    {
        dfs(x + 1, sy - 1);
        dfs(x - 1, sy - 1);
    }
}
int main() 
{
    scanf("%d%d", &n, &m);
    dfs(1, m);
    printf("%d", ans);
    return 0;
}

从上面这个程序可以看出,这题其实每次操作无外乎就只有两种情况:往左传往右传。那这就给我们提供了DP转移思路:
球在小蛮手里时,f[i][j] = f[n][j - 1] + f[2][j - 1]
球在第n个同学手里时,f[i][j]=f[1][j - 1]+f[n - 1][j - 1]
球在其他同学手里时,f[i][j]=f[i - 1][j - 1]+f[i + 1][j - 1]
解释一下 i 和 j :i就是第i个同学,j就是第j次传球

DP正解代码

#include <bits/stdc++.h>
using namespace std;
int n, m, f[110][110];

int main() 
{
    scanf("%d%d", &n, &m);
    f[2][1] = f[n][1] = 1;
    for (int j = 2; j <= m; j++) 
    {
        for (int i = 1; i <= n; i++) 
        {
            if (i == 1)
                f[i][j] = f[n][j - 1] + f[2][j - 1];
            else if (i == n)
                f[i][j] = f[1][j - 1] + f[n - 1][j - 1];
            else
                f[i][j] = f[i - 1][j - 1] + f[i + 1][j - 1];
        }
    }
    printf("%d", f[1][m]);
    return 0;
}

说实话,如果是在考场上,想到正解是最好的,但如果短时间内想不到正确解法的话就先用暴力程序拿分最好,后面有时间再想正解。DP代码虽好,比DFS短很多,时间也少,但毕竟难想,还是要拿分为重

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值