YBTOJ高效进阶递推算法课堂过关T4:传球游戏
题面
题目描述
上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。
游戏规则是这样的: 个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没有传出去的那个同学就是败者,要给大家表演一个节目。
聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传m次以后,又回到小蛮手里。两种传球方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有三个同学1号、2号、3号,并假设小蛮为1号,球传了 次回到小蛮手里的方式有2种。
输入格式
一行,有两个用空格隔开的整数 。
输出格式
一个整数,表示符合题意的方法数。
样例
样例输入
3 3
样例输出
2
数据范围
3≤n≤30,3≤m≤30。
思路:
又是一个数据范围小的伪深搜,30的范围不算大,但按照万能拿分方法dfs会TLE掉4个点。
无关的话不多说,先上爆搜代码:
#include <bits/stdc++.h>
using namespace std;
int n, m, a[40][40], ans;
void dfs(int x, int sy)//x代表当前在x号手里,sy表示还能走传几次
{
if (sy == 0)
{
if (x == 1)//传了m次后到了小蛮手里,方案数+1。
ans++;
return;
}
if (x == n) //球在第n个同学手里,特判一下往右传会回到1号手中。
{
dfs(1, sy - 1);
dfs(x - 1, sy - 1);
}
else if (x == 1)//球在第1个同学手里,特判一下往左传会回到n号手中。
{
dfs(x + 1, sy - 1);
dfs(n, sy - 1);
}
else//无须特判
{
dfs(x + 1, sy - 1);
dfs(x - 1, sy - 1);
}
}
int main()
{
scanf("%d%d", &n, &m);
dfs(1, m);
printf("%d", ans);
return 0;
}
从上面这个程序可以看出,这题其实每次操作无外乎就只有两种情况:往左传和往右传。那这就给我们提供了DP转移思路:
当球在小蛮手里时,f[i][j] = f[n][j - 1] + f[2][j - 1];
当球在第n个同学手里时,f[i][j]=f[1][j - 1]+f[n - 1][j - 1];
当球在其他同学手里时,f[i][j]=f[i - 1][j - 1]+f[i + 1][j - 1]。
解释一下 i 和 j :i就是第i个同学,j就是第j次传球。
DP正解代码
#include <bits/stdc++.h>
using namespace std;
int n, m, f[110][110];
int main()
{
scanf("%d%d", &n, &m);
f[2][1] = f[n][1] = 1;
for (int j = 2; j <= m; j++)
{
for (int i = 1; i <= n; i++)
{
if (i == 1)
f[i][j] = f[n][j - 1] + f[2][j - 1];
else if (i == n)
f[i][j] = f[1][j - 1] + f[n - 1][j - 1];
else
f[i][j] = f[i - 1][j - 1] + f[i + 1][j - 1];
}
}
printf("%d", f[1][m]);
return 0;
}
说实话,如果是在考场上,想到正解是最好的,但如果短时间内想不到正确解法的话就先用暴力程序拿分最好,后面有时间再想正解。DP代码虽好,比DFS短很多,时间也少,但毕竟难想,还是要拿分为重。