(POJ2151)Check the difficulty of problems <概率DP>

Check the difficulty of problems
Description

Organizing a programming contest is not an easy job. To avoid making the problems too difficult, the organizer usually expect the contest result satisfy the following two terms:
1. All of the teams solve at least one problem.
2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems.

Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem.

Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems?
Input

The input consists of several test cases. The first line of each test case contains three integers M (0 < M <= 30), T (1 < T <= 1000) and N (0 < N <= M). Each of the following T lines contains M floating-point numbers in the range of [0,1]. In these T lines, the j-th number in the i-th line is just Pij. A test case of M = T = N = 0 indicates the end of input, and should not be processed.
Output

For each test case, please output the answer in a separate line. The result should be rounded to three digits after the decimal point.
Sample Input

2 2 2
0.9 0.9
1 0.9
0 0 0
Sample Output

0.972
Source

POJ Monthly,鲁小石

题意:
比赛中,共 m 道题,t 个队,p[i][j]表示第 i 队解出第 j 题的概率
问:每队至少解出一题且冠军队至少解出 n 道题的概率。

分析:
这里写图片描述
如图所示,所以所求解为蓝色部分的概率。
为了求出蓝色部分的概率,我们需要知道每个队伍解出0,1,2,。。。,n-1题的概率。
所以可以用dp来求:dp[i][j][k]表示第i队在前j题中解出k题的概率。所有:
dp[i][j][k] = dp[i][j-1][k-1]p[i][j] + dp[i][j-1][k](1-p[i][j])
所有队都至少解出一题的概率:tt *= (1-dp[i][m][0]);
最后再减去每个队都只解出了 1 ~ n-1 题的概率;
即:(把每个队做对 1 ~ n-1 题的概率相加后,并把每个队的结果相乘);

AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

int m,t,n;
double p[1010][35];
double dp[1010][35][35];

int main()
{
    while(scanf("%d%d%d",&m,&t,&n)!=EOF)
    {
        if(m==0 && n==0 && t==0) break;
        memset(p,0,sizeof(p));
        memset(dp,0,sizeof(dp));
        for(int i=0;i<t;i++)
        {
            for(int j=1;j<=m;j++)
                scanf("%lf",&p[i][j]);
        }

        //计算dp[i][j][k]
        for(int i=0;i<t;i++)
        {
            dp[i][0][0] = 1;
            for(int j=1;j<=m;j++)
            {
                dp[i][j][0] = dp[i][j-1][0]*(1-p[i][j]);
                for(int k=1;k<=j;k++)
                {
                    dp[i][j][k] = dp[i][j-1][k-1]*p[i][j] + dp[i][j-1][k]*(1-p[i][j]);
                }
            }
        }

        //至少写出一题的概率
        double tt = 1;
        for(int i=0;i<t;i++)
            tt *= (1-dp[i][m][0]);

        //全部写出1~n-1题的概率
        double sum,tmp=1;
        for(int i=0;i<t;i++)
        {
            sum=0;
            for(int k=1;k<=n-1;k++)
                sum += dp[i][m][k];
            tmp *= sum;
        }

        double ans = tt - tmp;
        printf("%.3lf\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值