船舶轨迹预测新突破:基于AIS数据的混合深度学习模型

在当今全球贸易蓬勃发展的背景下,海上安全管理成为了国际贸易全球化进程的重要支撑。然而,船舶碰撞、走私等海上非法活动频发,给沿海地区带来了严重的海上安全威胁。为了应对这些挑战,船舶轨迹预测技术应运而生,它在海上态势感知和海事安全监控系统中扮演着至关重要的角色。

Fig 1

## 研究背景与挑战

船舶轨迹预测并非易事。一方面,目前主流的预测方法多聚焦于单艘船舶,鲜少考虑船舶之间的相互作用。另一方面,船舶轨迹数据存在质量参差不齐、分布稀疏等问题,这使得预测模型在某些区域的准确性大打折扣。此外,船舶的高度自主性和复杂交互性,也让其在复杂密集水域中的行为预测变得异常困难。

## 研究成果介绍

近日,一篇名为《Hybrid deep learning models for ship trajectory prediction in complex scenarios based on AIS data》的学术文章为我们带来了新的曙光。该研究提出了一种基于AIS数据的混合深度学习模型,用于复杂场景下的船舶轨迹预测。这一模型包含两个子模型:S-TGP模型和MVS-TGP模型。

### S-TGP模型:单船轨迹预测的利器

S-TGP模型结合了时间卷积网络(TCN)和门控循环单元(GRU),利用TCN的并行计算能力和GRU对历史数据长期相关性的估计能力,实现了对单艘船舶轨迹的高精度预测。这一模型不仅提高了预测的准确性,还增强了模型的泛化能力。无论是在开阔海域还是近海区域&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq_38220914

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值