种群大小的指数增长模式

一、种群增长模型

1、出生率

出生率(Birth rate)为 r b r_{b} rb n B n_{B} nB 为单位时间 Δ t \Delta t Δt 下出生的个体数, N ‾ \overline N N 为种群大小,则函数关系可表示为:
r b = n B Δ t ⋅ ( 1 N ‾ ) r_{b}=\frac{n_{B}}{\Delta t}\cdot (\frac{1}{\overline N}) rb=ΔtnB(N1)
量纲计算 r b = n t i m e ⋅ 1 n = 1 t i m e r_{b}=\frac{n}{time}\cdot\frac{1}{n}=\frac{1}{time} rb=timenn1=time1

2、死亡率

同理,死亡率(Death rate)为 r d r_{d} rd n D n_{D} nD 为单位时间 Δ t \Delta t Δt 下死亡的个体数, 函数关系可表示为:
r d = n D Δ t ⋅ ( 1 N ‾ ) r_{d}=\frac{n_{D}}{\Delta t}\cdot (\frac{1}{\overline N}) rd=ΔtnD(N1)
量纲问题:同理, r d r_{d} rd 的量纲为 1 t i m e \frac{1}{time} time1

3、种群增长率

因此,种群增长率与死亡率和出生率的函数关系可表示为:
r = r b − r d ,量纲: 1 t i m e r=r_{b}-r_{d},量纲:\frac{1}{time} r=rbrd,量纲:time1

4、种群增长模型

假设有这样一种兔子,其增长率为 r = 0.22 / y e a r r=0.22/year r=0.22/year , 设1998年时,此兔的初始种群大小为100只,则:
T i m e Population size 1998 100 1999 100 × ( 1 + 0.22 ) = 122 2000 100 × ( 1 + 0.22 ) × ( 1 + 0.22 ) = 148 … … … … 2022 100 × ( 1 + 0.22 ) 24 = 11821 \begin{array}{c|clr} Time &\text{Population size} \\ \hline 1998 & 100 \\ 1999 & 100\times(1+0.22)=122 \\ 2000 &100\times(1+0.22)\times(1+0.22)=148 \\ …… & ……\\ 2022 & 100\times(1+0.22)^{24}=11821 \end{array} Time199819992000……2022Population size100100×(1+0.22)=122100×(1+0.22)×(1+0.22)=148……100×(1+0.22)24=11821
可发现,此种群的增长模型可用函数表示为:
N t + 1 = N t ⋅ ( 1 + r ) N_{t+1}=N_{t}\cdot (1+r) Nt+1=Nt(1+r)
等式两边同时减 N t N_{t} Nt 得: N t + 1 − N t = N t ⋅ ( 1 + r ) − N t N_{t+1}-N_{t}=N_{t}\cdot (1+r)-N_{t} Nt+1Nt=Nt(1+r)Nt
但是此时的式子中, r r r 有量纲,等式两边量纲不一致。因此,引入时变 Δ t \Delta t Δt
{ N t + Δ t = N t ⋅ ( 1 + r ⋅ Δ t ) d N d t = lim ⁡ Δ t → + ∞ N t + Δ t − N t t + Δ t − t = lim ⁡ Δ t → + ∞ N t + Δ t − N t Δ t \begin{cases}\begin{align}N_{t+\Delta t}&=N_{t}\cdot (1+r\cdot\Delta t) \\\frac{dN}{dt}&=\lim_{\Delta t \to +\infty}\frac{N_{t+\Delta t}-N_{t}}{t+\Delta t-t}\\&=\lim_{\Delta t \to +\infty}\frac{N_{t+\Delta t}-N_{t}}{\Delta t}\end{align}\end{cases} Nt+ΔtdtdN=Nt(1+rΔt)=Δt+limt+ΔttNt+ΔtNt=Δt+limΔtNt+ΔtNt
合并(1)(3)式得:
d N d t = lim ⁡ Δ t → + ∞ N t ⋅ ( 1 + r ⋅ Δ t ) − N t Δ t \frac{dN}{dt}=\lim_{\Delta t \to +\infty}\frac{N_{t}\cdot (1+r\cdot\Delta t)-N_{t}}{\Delta t} dtdN=Δt+limΔtNt(1+rΔt)Nt
Δ t → ∞ \Delta t\to\infty Δt 时函数可导,常微分方程为:
N ′ = d N d t = r ⋅ N t N'=\frac{dN}{dt}=r\cdot N_{t} N=dtdN=rNt
分离变量得:
d N d t ⋅ 1 N = r \frac{dN}{dt}\cdot \frac{1}{N}=r dtdNN1=r
不定积分得:
l n ( N t ) = r + C ln(N_{t})=r+C ln(Nt)=r+C
去量纲化:
l n ( N t ) = r ⋅ t + C ln(N_{t})=r\cdot t+C ln(Nt)=rt+C
N t = e r ⋅ t + C = e c ⋅ e r ⋅ t \begin{aligned}N_{t}&=e^{r\cdot t+C}\\&=e^{c}\cdot e^{r\cdot t}\end{aligned} Nt=ert+C=ecert
其中, e c e^{c} ec 为常数项,计为 C 0 C_{0} C0
N t = C 0 ⋅ e r ⋅ t N_{t}=C_{0}\cdot e^{r\cdot t} Nt=C0ert
此式即为初始种群大小为 C 0 C_{0} C0 的指数增长模型
在这里插入图片描述
d N d t ⋅ 1 N = r \frac{dN}{dt}\cdot \frac{1}{N}=r dtdNN1=r 二次积分得:
d 2 ( l n N ) d 2 t = 0 \frac{d^{2}(lnN)}{d^{2}t}=0 d2td2(lnN)=0
因此,在没有资源限制,不考虑遗传、年龄结构等因素的前提下,只要初始种群大小 C 0 ≠ 0 C_{0}\not=0 C0=0 ,种群会一致呈指数增长,类似于牛顿第一定律(任何物体都要保持匀速直线运动或静止状态,直到外力迫使它改变运动状态为止)。
种群增长 { C 0 = 0 , N t = 0 C 0 > 0 ,种群一直增长 牛顿第一定律 { v 0 = 0 ,静止 v 0 ≠ 0 ,匀速运动 \begin{aligned}种群增长&\begin{cases}C_{0}=0,N_{t}=0\\C_{0}>0,种群一直增长\end{cases}\\牛顿第一定律&\begin{cases}v_{0}=0,静止\\v_{0}\not=0,匀速运动\end{cases}\end{aligned} 种群增长牛顿第一定律{C0=0Nt=0C0>0,种群一直增长{v0=0,静止v0=0,匀速运动

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Odd_guy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值