2025年伊始,人工智能的浪潮依然汹涌澎湃,持续推动着技术革新的步伐。
先是AI初创公司DeepSeek,以极低的成本训练出了能与OpenAI的ChatGPT相媲美的人工智能大模型,在春节期间席卷全球各地应用下载榜,成为全球增速最快的AI原生应用。
而后是一群身着花袄的人形机器人登上央视蛇年春晚舞台,不仅能够丝滑扭腰,模仿人类的踢腿等动作,而且还能零帧起手转手绢。高精度、高灵活性的表现,离不开具身智能技术的深度应用。
图源:春晚
近年来,人工智能的应用不断加速演进,为各行业实现产品和流程革新提供了更加先进的工具和手段,其中大模型和具身智能引领下的人形机器人的进步尤其引人注目。本期“师说”系列访谈,我们邀请到了北京理工大学集成电路与电子学院副教授周治国,共同探讨人工智能在智慧课堂与具身智能样板间的应用与发展。
周治国,北京理工大学集成电路与电子学院副教授。长期从事智能无人系统感知与导航技术研究,在多模态感知融合、即时定位与地图构建、路径规划与导航避障等算法研究方面取得了一系列原创性成果。作为课题技术负责人参研国家自然科学基金重大项目、重点项目,国家科技攻关项目,在国内外重要学术期刊上发表论文30余篇。
巧用AI Agent,让智慧课堂“活”起来
教学交互问题作为一个永恒的话题,不断激发着教育工作者的创新思考。智慧课堂的引入,使得教学过程能够实现智能化互动,不仅支持了教师的“精准教”,也促进了学生的“个性学”,显著提高了精准教学的可行性和效率。采访中,周治国教授系统阐释了基于「MWORKS+AI」的智慧课堂的实践探索。
首先,智慧课堂一般有三块屏幕,主屏呈现知识框架;辅屏搭载MWORKS云端IDE(即MWORKS Online),通过MWORKS Online将抽象公式转化为动态模型,支持在线计算与实时渲染,构建“可操作的知识图谱”;第三屏动态展示模型实时参数调整的仿真效果。
其次,师生可协同修改算法参数,系统即时反馈参数调整对模型的影响,并记录算法迭代全过程,形成可回溯的思维轨迹,强化理解深度。
最后,智慧课堂引入了AI Agent(智能体),相当于智能助教的角色。AI Agent承担课堂记录、基础答疑、参数优化建议等常规事务,教师专注核心问题解析,实现教学资源的最优配置。
经过两年多的教学验证,该模式显著提升课堂参与度与知识内化率。未来将通过MoHub平台进行规模化推广,计划2025年春季学期实现跨校际应用,同步建设教师数字能力发展体系,构建“平台+资源+培训”的生态化服务矩阵。
构建教学、实验、科研竞赛一体化的具身智能样板间
具身智能是人工智能领域中的一个重要分支,随着我国加快推进新型工业化,具身智能作为新质生产力的典型代表,成为国家布局产业规划的关键重点。不同于传统AI的“离身”特性,具身智能强调智能体与物理世界的深度交互。它们能够实时捕捉并处理来自周围环境的信息,并据此做出决策和执行行动,登上春晚的人形机器人则被视为具身智能的最佳载体之一。
周治国认为,具身智能在解决偶发性事件仿真方面具有显著优势。“具身空间可以理解为一个人和无人系统,这个人通过什么方式跟无人系统进行交互,无人系统通过什么方式知道人的意图来执行相关任务,这个事情的底层需要平台来支撑。原先的CPS(信息物理融合系统)仿真,针对传统的、大概率的事件的仿真是比较有效的,但是对于这种偶发性的、需要灵机一现的事件的仿真,需要通过具身智能工具箱来实现。工具箱将于2025年年中推出,推出后大家就可以在具身空间与无人系统更好地进行互动。”
当前,北京理工大学和同元软控正在合力打造具身智能样板间,以无人船、月球车为对象,针对现代无人系统,基于MWORKS平台构建无人系统具身智能体,打通系统模型与渲染引擎的数据交互,并开展具身空间的人工智能算法探索预研,构建初版具身智能产品。
谈到对具身智能样板间的未来期望,周治国表示,希望通过构建集教学、实验、科研与竞赛于一体的具身智能样板间,真正实现教育的平等与普及。在这个环境中,学生可以与无人系统进行互动,而无人系统也被视为一种学习主体。这样的互动不仅促进了知识的传递,还使得人类的经验得以在这个空间中积累和传承。
扎实推进“具身智能仿真与建模”课程、教材建设
随着具身智能技术的发展,通用人工智能技术人才需求日增,具备跨学科综合能力、仿真到现实的迁移能力、环境感知与自主决策能力、创新与实践能力的人才正成为行业的核心需求。开设《具身智能仿真与建模》这门课程,帮助学生掌握具身智能概念、技术、操作与案例,有助于后续学习和研究。
周治国介绍道,《具身智能仿真与建模》课程将于2025年春季学期开课,相关教材正在和同元协作编写,教材在内容上尽可能涵盖具身智能基础知识的各方面。
1.理论与实践相结合
不仅详细阐述具身智能的背景、研究现状及主流框架,还深入介绍MWORKS物理建模和仿真基础知识,确保读者能够全面掌握具身智能的理论精髓和实际应用。
2.深度学习算法融入
针对具身智能中的关键环节,如感知、导航等,详细介绍相关的深度学习算法,并展示如何将这些算法有效应用于具身智能系统中。
3.国产化仿真平台
重点介绍基于MWORKS的具身智能框架,包括ROS、Unity虚拟仿真环境、MWORKS物理引擎。
4.案例丰富
通过多个基于MWORKS的具身智能仿真案例,主要包括机械臂、无人车、无人船、无人机等,展示具身智能在机器人等领域的实际应用,帮助读者更好地理解和掌握所学知识。
展望2025年,人工智能从单纯的工具进化为智能协作伙伴,人工智能领域焦点从技术突破转向规模化落地,智能化应用正逐步从高端应用场景向更多细分领域和日常生活渗透。然而,技术的进步只是基础,真正的革命在于它对工作本质的重新定义。在人工智能新时代,周治国认为高校教师的角色在一定程度上可能会从传统的知识传授转变为“涌现”启发者,与智能技术形成互补、协同、创新的关系,从而更好地赋能学生的个性化发展。