【MWORKS专业工具箱系列教程】控制系列工具箱第一期:控制系统模型创建

MWORKS控制系列工具箱包括基础控制系统工具箱、基于模型的控制器设计工具箱、系统辨识工具箱、鲁棒控制工具箱等,其中基础控制系统工具箱与基于模型的控制器设计工具箱是MWORKS控制系列工具箱的基础,下文将这两个工具箱合称为控制系统工具箱。

这两个工具箱面向经典控制和现代控制领域,为分析、设计和调节线性控制系统提供算法、模型和应用程序。支持将控制系统的构成环节指定为传递函数、状态空间或零极点增益模型,通过函数和应用程序,可实现对系统时域和频域响应的分析与可视化。提供交互式应用程序支持伯德回路整形和根轨迹方法来设计和调节补偿器参数。在现代控制方面,提供状态估计、LQG设计、极点配置等一系列功能函数。控制系统工具箱同时支持Modelica物理被控对象模型的线性化处理、分析、控制律设计和调节。

本工具箱教程以控制系统模型创建、分析与设计流程为主线,通过大量示例介绍MWORKS控制系统工具箱的功能和具体使用。包括10篇内容:

  • 控制系统模型创建

  • 控制系统模型转换

  • 控制系统连接与化简

  • 时域分析

  • 频域分析

  • 根轨迹分析

  • PID控制器设计

  • 交互式控制系统设计APP

  • 状态反馈设计

  • 非线性模型的线性化

本教程代码均可直接复制到Syslab中运行,使用教程中代码前需参照下述方法加载函数库内容:

  • 方法一:在Syslab的命令行窗口输入using TyControlSystems并回车(重启软件或命令行窗口后需重新输入);

  • 方法二:按照下图中的方法预加载函数库(设置好后每次启动软件默认加载)。


第一期:控制系统模型创建

大部分控制系统分析与设计的方法都需要假设系统的模型已知,而获得数学模型有两种方法:

  • 从已知的物理规律出发,用数学推导的方式建立系统的数学模型

  • 由实验数据拟合系统的数学模型(系统辨识)

线性系统一般可以用以下三种模型进行表示:

  • 传递函数模型

  • 状态空间模型

  • 零极点增益模型

一、传递函数模型(tf

连续时间动态系统一般以微分方程描述,而 LTI 系统则以定常系数线性常微分方程描述。假设系统的输入信号为 𝑢(𝑡) ,输出为 𝑦(𝑡) ,则 n 阶系统的微分方程为:

{a_n}\frac{​{​{d^n}y\left( t \right)}}{​{d{t^n}}} + {a_{n - 1}}\frac{​{​{d^{n - 1}}y\left( t \right)}}{​{d{t^{n - 1}}}} + \cdots + {a_1}\frac{​{dy\left( t \right)}}{​{dt}} + {a_0}y\left( t \right) = {\kern 1pt} {b_m}\frac{​{​{d^m}u\left( t \right)}}{​{d{t^m}}} + {b_{m - 1}}\frac{​{​{d^{m - 1}}u\left( t \right)}}{​{d{t^{m - 1}}}} + \cdots + {b_1}\frac{​{du\left( t \right)}}{​{dt}} + {b_0}u\left( t \right){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left( {n \ge m} \right)

系统输入量与输出量的 Laplace 变换之比即为其传递函数:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值