反向传播(Backpropagation)是一种在神经网络中用于计算梯度的算法,它使得神经网络可以通过优化算法(如梯度下降)来调整权重和偏置,以最小化损失函数。反向传播算法的核心思想是通过链式法则计算每个参数对损失函数的梯度,从而确定梯度方向以便在参数空间中更新权重。
以下是反向传播算法的详细步骤:
一.前向传播(Forward Pass):
- 从输入数据开始,通过网络的每一层进行计算,依次应用线性变换(加权和)和非线性激活函数(如ReLU、Sigmoid等)。
- 在前向传播过程中,记录每一层的输出和中间变量,以便在后续的反向传播中使用。
二.计算损失函数(Loss Calculation):
- 将模型的输出与真实标签进行比较,计算损失函数值。损失函数衡量了模型预测与真实值之间的差异。
三.反向传播(Backward Pass):
- 从损失函数开始,通过使用链式法则计算每个参数的梯度。链式法则允许我们将复合函数的导数拆分为一系列相对简单的导数乘积。
- 对于每个参数,计算其对损失函数的偏导数(梯度)。
- 通过计算梯度,可以确定在参数空间中更新权重的方向,以减少损失函数。
四. 参数更新(Optimization):
- 采用优化算法(如梯度下降、Adam等),使用计算得到的梯度来更新网络中的权重和偏置。
- 通常会乘以学习率来控制每次更新的步长。
五. 重复迭代:
- 重复执行前向传播、损失计算、反向传播和参数更新的步骤,直到达到预定的迭代次数或损失收敛到满意的程度。
反向传播算法的核心思想是在网络中通过反向传递梯度,计算出每个参数对损失的贡献,从而引导权重和偏置的更新方向,以最小化损失函数。这种自动计算梯度的能力是神经网络训练的关键所在,它使得网络能够逐步优化自己的参数,以更好地拟合训练数据。