反向传播(Backpropagation) 是训练神经网络的核心算法,它通过反向逐层计算损失函数对每个权重的梯度,来反向逐层更新网络的权重,从而最小化损失函数。
一、反向传播的基本概念
1. 前向传播(Forward Propagation)
在前向传播中,输入数据从输入层通过隐藏层传递到输出层。网络通过层与层之间的连接(即权重)来计算每个节点的输出,最终生成网络的预测结果。
2. 计算损失(Compute Loss)
将网络的预测输出与真实值进行比较,计算损失函数(如均方误差),用来衡量网络的预测输出与真实值的差距。
3. 反向传播(Backward Propagation)
反向传播的过程主要由链式法则驱动。它通过逐层计算误差对权重的偏导数(梯度),从输出层反向传递到隐藏层,再传递到输入层(与前向传播顺序相反),以反向更新每层的权重,减少预测误差。
- 前向传播相当于将输入数据从输入层逐步传递到输出层,得到预测结果。
- 反向传播相当于从输出层开始反向传递误差,更新每一层的权重,使得网络在下次预测时能够减少误差。
4. 权重更新(Weights Update)
使用优化算法(如梯度下降)根据梯度更新权重。使得下一次前向传播时损失函数值减小。
二、反向传播的数学推导
对于一个简单的神经网络,损失函数 L L L 是关于网络输出 y y y 和真实值 t t t 的函数,而网络输出 y y y 又是关于输入 x x x 和权重 w w w 的函数。
通过链式法则,损失函数对权重的梯度可以表示为:
∂ L ∂ w = ∂ L ∂ y ⋅ ∂ y ∂ w \frac{\partial L}{\partial w} = \frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial w} ∂w∂L=∂y∂L⋅∂w∂y
三、反向传播的图示
图片来源:https://ai.stackexchange.com/questions/31566/different-ways-to-calculate-backpropagation-derivatives-any-difference
- 前向传播(蓝色箭头)负责计算输出预测值(Out)和误差(Err)。
- 反向传播(绿色和红色箭头)从输出误差(Err)开始,将误差逐层传播到隐藏层( a a a)和输入层(X),计算每个权重(W)的梯度,用于后续的权重更新。
四、反向传播的简单计算示例
假设我们有一个简单的两层神经网络:
- 输入层(x):一个节点,输入值为 x x x。
- 隐藏层(a):一个节点,激活函数为 Sigmoid 函数。
- 输出层(y):一个节点,激活函数为线性函数,输出值为 y y y。
网络的权重:
- 输入层到隐藏层的权重: w 1 w_1 w1。
- 隐藏层到输出层的权重: w 2 w_2 w2。
给定以下初始条件:
- 输入 x = 1 x = 1 x=1。
- 目标输出 t = 0 t = 0 t=0。
- 初始权重 w 1 = 0.5 w_1 = 0.5 w1=0.5, w 2 = 0.5 w_2 = 0.5 w2=0.5。
- 学习率 η = 0.1 \eta = 0.1 η=0.1。
步骤1:前向传播
- 计算隐藏层的输入和输出
z = w 1 ⋅ x = 0.5 ⋅ 1 = 0.5 z = w_1 \cdot x = 0.5 \cdot 1 = 0.5 z=w1⋅x=0.5⋅1=0.5
隐藏层的激活输出(使用 Sigmoid 函数):
a = σ ( z ) = 1 1 + e − z = 1 1 + e − 0.5 ≈ 0.6225 a = \sigma(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + e^{-0.5}} \approx 0.6225 a=σ(z)=