PyTorch实现逻辑回归模型

  逻辑回归是线性的二分类模型。
模 型 表 达 式 : y = f ( W X + b ) , f ( x ) = 1 1 + e − x 模型表达式:y=f(WX+b),f(x)=\frac{1}{1+e^{-x}} y=f(WX+b)f(x)=1+ex1
  𝑓(x)称为Sigmoid函数,也称为 Logistic 函数,作用是将输入数据映射到[0, 1]之间。

x = torch.arange(-10, 10, 0.2)
y = torch.sigmoid(x)
plt.plot(x.data.numpy(), y.data.numpy(), lw=5)
plt.xlim(-10, 10)
plt.ylim(0, 1)
plt.vlines(0, 0, 1, linestyles="--", colors='gray')
plt.hlines(0.5, -10, 10, linestyles="--", colors='gray')
plt.show()

在这里插入图片描述
   二 分 类 方 法 : c l a s s = { 1 , y > 0.5 0 , y ≤ 0.5 二分类方法:class=\begin{cases} 1&,y>0.5 \\ 0&,y\leq 0.5\end{cases} class={10,y>0.5,y0.5
  线性回归是分析自变量x与因变量y(标量)之间关系的方法。
  逻辑回归是分析自变量x与因变量y(概率)之间关系的方法。
  假如没有激活函数f(x),单纯用y = WX + b,其实也可以进行二分类,对应图像可以看出,WX + b > 0时判别为类别1,WX + b ≤ 0时判别为类别0。为了更好的描述分类置信度,所以采用Sigmoid函数将输出映射到[0,1],符合概率取值。
  逻辑回归也叫对数几率回归。几率就是 y 1 − y \frac{y}{1-y} 1yy,表示样本x为正样本的可能性。对几率取对数,就得到了对数几率 l n y 1 − y ln\frac{y}{1-y} ln1yy。线性回归y = WX+b是用WX+b去拟合y, l n y 1 − y = W X + b ln\frac{y}{1-y}=WX+b ln1yy=WX+b为逻辑回归模型表达式的恒等变形,是用WX+b去拟合对数几率,因此叫做对数几率回归。

import torch
import matplotlib.pyplot as plt
import torch.nn as nn
import numpy as np

torch.manual_seed(10)

# 生成数据
sample_num = 100
mean = 1.7
bias = 1
n_data = torch.ones(sample_num, 2)
x0 = torch.normal(mean * n_data, 1) + bias  # 类别0的数据
y0 = torch.zeros(sample_num)  # 类别0的标签
x1 = torch.normal(-mean * n_data, 1) + bias  # 类别1的数据
y1 = torch.ones(sample_num)  # 类别1的标签
train_x = torch.cat((x0, x1), 0)
train_y = torch.cat((y0, y1), 0)


# 选择模型
class LR(nn.Module):  # 用nn.Module构建逻辑回归模型类
    def __init__(self):
        super(LR, self).__init__()
        self.features = nn.Linear(2, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):  # 前向传播函数
        x = self.features(x)
        x = self.sigmoid(x)
        return x


lr_net = LR()  # 实例化逻辑回归模型

# 损失函数
loss_fn = nn.BCELoss()  # 二分类的交叉熵函数

# 优化器
lr = 0.01  # 学习率
optimizer = torch.optim.SGD(lr_net.parameters(), lr=lr, momentum=0.9)

# 迭代训练
for i in range(1000):
    y_pre = lr_net(train_x)  # 前向传播
    loss = loss_fn(y_pre.squeeze(), train_y)  # 计算loss
    loss.backward()  # 反向传播
    optimizer.step()  # 更新参数

    mask = y_pre.ge(0.5).float().squeeze()  # 以0.5为阈值进行分类
    correct = (mask == train_y).sum()  # 正确预测的样本个数
    acc = correct.item() / train_y.size(0)  # 计算分类准确率

    # 绘图
    if i == 999 or acc > 0.99:
        plt.scatter(x0.data.numpy()[:, 0], x0.data.numpy()[:, 1], c="r", label='class 0')
        plt.scatter(x1.data.numpy()[:, 0], x1.data.numpy()[:, 1], c="b", label='class 1')

        w0, w1 = lr_net.features.weight[0]
        w0, w1 = float(w0.item()), float(w1.item())
        plot_b = float(lr_net.features.bias[0].item())
        plot_x = np.arange(-6, 6, 0.1)
        plot_y = (-w0 * plot_x - plot_b) / w1

        plt.xlim(-5, 7)
        plt.ylim(-7, 7)
        plt.plot(plot_x, plot_y)

        plt.text(-5, 5, 'loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
        plt.title('i:{} w0:{:.2f} w1:{:.2f} b:{:.2f} acc:{:.2%}'.format(i, w0, w1, plot_b, acc))
        plt.legend()
        plt.pause(0.5)
        break

在这里插入图片描述
  如果把mean调整得更小,例如1或者0.5,会发现样本点有部分重合,即使训练到最后,准确率也很低;如果把mean调整得更大,例如5,会发现样本点分布很明显,更容易分类。
  如果把bias调整成绝对值很大的数,例如5,会发现不管怎么训练模型都无法分类,这是因为,从sigmoid图像中可以看出,如果数据比较大的时候,梯度几乎为0,反向传播求导无法求到一个很好的梯度,所以没有办法训练模型,这种情况称为梯度消失。
  所以我们要对数据进行归一化处理,让它们处于0附近。

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。
好的,下面是使用 PyTorch 实现逻辑回归的代码示例: ```python import torch import torch.nn as nn import torch.optim as optim import numpy as np # 定义数据 X = torch.tensor([[1.0, 2.0], [2.0, 3.0], [3.0, 4.0], [4.0, 5.0]]) y = torch.tensor([[0.0], [0.0], [1.0], [1.0]]) # 定义模型 class LogisticRegression(nn.Module): def __init__(self, input_dim, output_dim): super(LogisticRegression, self).__init__() self.linear = nn.Linear(input_dim, output_dim) self.sigmoid = nn.Sigmoid() def forward(self, x): out = self.linear(x) out = self.sigmoid(out) return out model = LogisticRegression(input_dim=2, output_dim=1) # 定义损失函数和优化器 criterion = nn.BCELoss() optimizer = optim.SGD(model.parameters(), lr=0.1) # 训练模型 num_epochs = 1000 for epoch in range(num_epochs): # 前向传播 outputs = model(X) loss = criterion(outputs, y) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 打印损失值 if (epoch+1) % 100 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) # 预测 with torch.no_grad(): predicted = model(X).round() print('Predicted Values:', predicted) ``` 上述代码中: - `X` 和 `y` 分别表示输入和输出数据; - `LogisticRegression` 类定义了模型,其中包含一个线性层和一个 sigmoid 函数,用于计算输出; - `BCELoss` 是二元交叉熵损失函数,用于计算损失值; - `SGD` 是随机梯度下降优化器,用于优化模型; - `num_epochs` 表示训练的次数; - 在训练过程中,首先进行前向传播计算,然后计算损失值,接着进行反向传播和优化; - 在训练结束后,使用训练好的模型进行预测,输出预测结果。 注意:在实际应用中,需要对数据进行预处理和归一化等操作。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值