行列式|A|的各个元素的代数余子式Aij所构成的如下矩阵
A
∗
=
[
A
11
A
21
⋯
A
n
1
A
12
A
22
⋯
A
n
2
⋮
⋮
⋮
A
1
n
A
2
n
⋯
A
n
n
]
A^*=\begin{bmatrix} A_{11} & A_{21} & \cdots & A_{n1}\\ A_{12} & A_{22} & \cdots & A_{n2}\\ \vdots & \vdots & & \vdots\\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{bmatrix}
A∗=⎣⎢⎢⎢⎡A11A12⋮A1nA21A22⋮A2n⋯⋯⋯An1An2⋮Ann⎦⎥⎥⎥⎤ 称为矩阵A的伴随矩阵。
性质
AA* = A*A = |A|E 证明:
A
A
∗
=
[
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋮
a
n
1
a
n
2
⋯
a
n
n
]
[
A
11
A
21
⋯
A
n
1
A
12
A
22
⋯
A
n
2
⋮
⋮
⋮
A
1
n
A
2
n
⋯
A
n
n
]
=
[
∣
A
∣
∣
A
∣
⋱
∣
A
∣
]
=
∣
A
∣
E
AA^* = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}\begin{bmatrix} A_{11} & A_{21} & \cdots & A_{n1}\\ A_{12} & A_{22} & \cdots & A_{n2}\\ \vdots & \vdots & & \vdots\\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{bmatrix}=\begin{bmatrix} |A| & & & \\ & |A| & & \\ & & \ddots & \\ & & & |A| \end{bmatrix}=|A|E
AA∗=⎣⎢⎢⎢⎡a11a21⋮an1a12a22⋮an2⋯⋯⋯a1na2n⋮ann⎦⎥⎥⎥⎤⎣⎢⎢⎢⎡A11A12⋮A1nA21A22⋮A2n⋯⋯⋯An1An2⋮Ann⎦⎥⎥⎥⎤=⎣⎢⎢⎡∣A∣∣A∣⋱∣A∣⎦⎥⎥⎤=∣A∣E
逆矩阵
对于n阶矩阵A,如果有一个n阶矩阵B,使AB = BA = E,则说矩阵A是可逆的,并把矩阵B称为A的逆矩阵。
∣
A
−
1
∣
=
1
∣
A
∣
|A^{-1}| = \frac{1}{|A|}
∣A−1∣=∣A∣1
定理2:若|A| ≠ 0,则矩阵A可逆,且
A
−
1
=
1
∣
A
∣
A
∗
A^{-1} = \frac {1}{|A|}A^*
A−1=∣A∣1A∗ 证明:AA* = A*A = |A|E,
A
A
∗
∣
A
∣
=
A
∗
∣
A
∣
A
=
E
A\frac{A^*}{|A|}=\frac{A^*}{|A|}A=E
A∣A∣A∗=∣A∣A∗A=E,故A可逆,且
A
−
1
=
A
∗
∣
A
∣
A^{-1} = \frac {A^*}{|A|}
A−1=∣A∣A∗
|A| = 0,A称为奇异矩阵,否则称为非奇异矩阵
推论:若AB = E(或BA = E),则B = A-1
性质
若A可逆,则A-1亦可逆,且(A-1)-1 = A
若A可逆,数λ≠0,则λA可逆,且
(
λ
A
)
−
1
=
1
λ
A
−
1
(\lambda A)^{-1} = \frac{1}{\lambda}A^{-1}
(λA)−1=λ1A−1
若A可逆,则AT亦可逆,且(AT)-1 = (A-1)T 证明:AT(A-1)T = (A-1A)T = ET = E
若A可逆,A0 = E,A-k = (A-1)k,AλAμ = Aλ+μ,(Aλ)μ = Aλμ
【例】求
A
=
[
a
b
c
d
]
A=\begin{bmatrix} a & b\\ c & d \end{bmatrix}
A=[acbd]的逆矩阵。 解:|A| = ad - bc,
A
∗
=
[
d
−
b
−
c
a
]
A^*=\begin{bmatrix} d & -b\\ -c & a \end{bmatrix}
A∗=[d−c−ba],
A
−
1
=
A
∗
∣
A
∣
=
1
a
d
−
b
c
[
d
−
b
−
c
a
]
A^{-1} = \frac {A^*}{|A|}=\frac{1}{ad - bc}\begin{bmatrix} d & -b\\ -c & a \end{bmatrix}
A−1=∣A∣A∗=ad−bc1[d−c−ba](记住结论)
【例】
设
P
=
[
1
2
1
4
]
,
Λ
=
[
1
0
0
2
]
,
A
P
=
P
Λ
,
求
A
n
.
设P =\begin{bmatrix} 1 & 2\\ 1 & 4 \end{bmatrix},\Lambda=\begin{bmatrix} 1 & 0\\ 0 & 2 \end{bmatrix},AP=P\Lambda,求A^n.
设P=[1124],Λ=[1002],AP=PΛ,求An. 解:APP-1 = PΛP-1,A = PΛP-1,A2 = PΛP-1PΛP-1 = PΛ2P-1,An = PΛnP-1,
Λ
n
=
[
1
0
0
2
n
]
\Lambda ^n=\begin{bmatrix} 1 & 0\\ 0 & 2^n \end{bmatrix}
Λn=[1002n](记住结论),
A
n
=
P
Λ
n
P
−
1
=
[
1
2
1
4
]
[
1
0
0
2
n
]
1
2
[
4
−
2
−
1
1
]
=
[
2
−
2
n
2
n
−
1
2
−
2
n
+
1
2
n
+
1
−
1
]
A^n=P\Lambda ^nP^{-1}=\begin{bmatrix} 1 & 2\\ 1 & 4 \end{bmatrix}\begin{bmatrix} 1 & 0\\ 0 & 2^n \end{bmatrix}\frac {1}{2}\begin{bmatrix} 4 & -2\\ -1 & 1 \end{bmatrix}=\begin{bmatrix} 2-2^n & 2^n-1\\ 2-2^{n+1} & 2^{n+1}-1 \end{bmatrix}
An=PΛnP−1=[1124][1002n]21[4−1−21]=[2−2n2−2n+12n−12n+1−1]
Numpy中逆矩阵的函数
import numpy as np
m = np.mat([[1,2],[3,4]])print(m.I)print(np.linalg.inv(m))# 对应于MATLAB中 inv() 函数
[[-2. 1. ]
[ 1.5 -0.5]]
[[-2. 1. ]
[ 1.5 -0.5]]
伪逆矩阵:也称广义逆矩阵
import numpy as np
m = np.mat([[1,2],# 奇异矩阵[2,4]])print(np.linalg.pinv(m))# 对应于MATLAB中 pinv() 函数