Mutual Quantization for Cross-Modal Search with Noisy Labels

文章提出了一种新的代理对比损失函数,用于减小不同模态间的异质鸿沟,同时通过自信例选择策略利用深度网络的记忆效应抵抗噪声标签的影响。此外,还引入了互量化损失以增强跨模态模型的一致性,从而提高预测质量。实验结果表明,这种方法在处理混合标签数据时能有效防止过拟合,优化学习过程。
摘要由CSDN通过智能技术生成

首先是三幅图的介绍

在这里插入图片描述
图a的训练样本是对错混杂的,进行的训练,错误标签会导致不同模态的异质鸿沟加大(原文说的是混淆不同模态的区别性连接),更难学习
图b的测试集,曲线先上后下,下降意味着模型快速拟合了噪声标签,降低了搜索性能
图c是将数据集分成标签好和坏两部分,分别进行训练,然后show the map based on correct labels,map都是先上后下,并且错误标签训练的模型,他的map更低
从b和c,可以得到结论:
1》不论用好坏标签数据训练,都先上后下,并且是先拟合的净数据,再过拟合脏数据
2》测试集的map先上后下,表明从净数据的学习早期占主导地位,然后才是脏数据

文章的创新如下:
1》我们提出了一个基于代理的对比损失(proxy-based contrastive loss),它可以将一个实例的不同模态转换成相应的共性代理代码,有效缩小异质鸿沟
2》通过优先选择损失较小的示例,我们的方法可以有效地利用深度交叉模态网络的记忆效应,并对抗噪声标签的影响。
3》提出了一种互量化损失(mutual quantization loss),以最大限度地提高来自不同模态的模型的一致性,从而可以提高预测代码的质量。

方法

在这里插入图片描述

Proxy-based Contrastive Quantization

在这里插入图片描述
![(https://img-blog.csdnimg.cn/ea3289a2668d43abaa12240db59035db.png)

Confident Example Selection

在这里插入图片描述
在这里插入图片描述

Optimization

在这里插入图片描述

结论

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值