首先是三幅图的介绍
图a的训练样本是对错混杂的,进行的训练,错误标签会导致不同模态的异质鸿沟加大(原文说的是混淆不同模态的区别性连接),更难学习
图b的测试集,曲线先上后下,下降意味着模型快速拟合了噪声标签,降低了搜索性能
图c是将数据集分成标签好和坏两部分,分别进行训练,然后show the map based on correct labels,map都是先上后下,并且错误标签训练的模型,他的map更低
从b和c,可以得到结论:
1》不论用好坏标签数据训练,都先上后下,并且是先拟合的净数据,再过拟合脏数据
2》测试集的map先上后下,表明从净数据的学习早期占主导地位,然后才是脏数据
文章的创新如下:
1》我们提出了一个基于代理的对比损失(proxy-based contrastive loss),它可以将一个实例的不同模态转换成相应的共性代理代码,有效缩小异质鸿沟
2》通过优先选择损失较小的示例,我们的方法可以有效地利用深度交叉模态网络的记忆效应,并对抗噪声标签的影响。
3》提出了一种互量化损失(mutual quantization loss),以最大限度地提高来自不同模态的模型的一致性,从而可以提高预测代码的质量。
方法
Proxy-based Contrastive Quantization
Confident Example Selection