BERT 面试题 2

1、请简要介绍BERT的网络结构,预训练任务,和优势¹²。

BERT的网络结构是基于Transformer的Encoder部分,由多层自注意力机制和前馈神经网络组成。BERT的预训练任务有两个:Masked Language Model(MLM)和Next Sentence Prediction(NSP)。MLM是在输入序列中随机遮盖一些词,然后让模型预测被遮盖的词。NSP是给定两个句子,让模型判断它们是否是连续的。BERT的优势是能够利用双向的上下文信息,学习到更丰富和通用的语言表示,从而在多种下游任务中取得了显著的提升。

2、请解释BERT中的三种Embedding(Token Embedding,Segment Embedding,Position Embedding)的作用和实现方式²。

BERT中的三种Embedding分别是:
Token Embedding:将输入序列中的每个词转换为一个固定维度的向量,作为模型的输入。BERT使用了WordPiece算法,将词切分为更细粒度的子词,以减少未登录词的问题。BERT还在输入序列的开头和结尾添加了特殊的标记[CLS]和[SEP],用于分类任务和句子对任务。
Segment Embedding:用于区分输入序列中的不同句子,因为BERT能够处理句子对的分类任务,例如判断两个句子是否语义相似。Segment Embedding有两种向量表示,分别对应第一个句子和第二个句子,在输入序列中用0和1进行标记。
Position Embedding:用于表示输入序列中每个词的位置信息,因为Transformer没有使用循环神经网络或卷积神经网络,无法捕捉序列顺序的信息。Position Embedding是一个可学习的查找表,每个位置对应一个向量,最大长度为512。
最后,BERT将三种Embedding逐元素相加,得到一个综合的Embedding作为模型的输入。

3、请解释BERT中的Multi-Head Attention的原理和计算过程¹²。

BERT中的Multi-Head Attention是一种自注意力机制,能够让模型在编码一个词时同时利用其上下文的信息。Multi-Head Attention的计算过程如下:
首先,将输入序列中每个词的Embedding映射为三个向量:Query,Key,Value。这三个向量分别用于表示当前词对其他词的查询,其他词对当前词的匹配程度,以及当前词本身的语义信息。
然后,将三个向量分别切分为H个小向量(H为头数),每个小向量的维度为D/H(D为原始向量维度)。这样做的目的是让每个头关注不同的语义子空间。
接着,对每一组小向量之间进行点积注意力计算,即先计算Query和Key之间的点积作为权重矩阵,然后除以根号D/H进行缩放(这样做是为了防止点积结果过大导致梯度消失),再通过Softmax函数进行归一化,最后根据权重矩阵加权Value向量得到输出向量。
最后,将H个头输出的向量拼接起来,并通过一个线性变换得到最终输出。

4、请解释BERT中为什么要使用Layer Normalization而不是Batch Normalization¹。

Layer Normalization针对单个样本的不同特征进行归一化,不依赖于其他样本的信息,适用于小批量或动态网络的场景,特别是自然语言处理领域。Batch Normalization针对一个批量的同一特征进行归一化,依赖于批量大小和数据分布,适用于图像领域,因为图像中每个卷积核的参数在不同位置是共享的,因此也应该被一起归一化。

5、请解释BERT中为什么要使用WordPiece而不是分词¹²。

WordPiece是一种将词切分为更细粒度的子词的方法,它的核心思想是根据子词的组合频率,从字符开始逐步合并成更长的子词,直到达到预设的词表大小。WordPiece的作用是减少未登录词(OOV)的问题,提高模型的泛化能力和覆盖范围。例如,一个生僻词cosplayer,如果使用分词,可能会被标记为UNK,而WordPiece可以将它切分为cos##play##er,模型可以利用词根和前缀后缀等信息,学习到这个词的大致含义,而不是一个未知符号。

6、请解释BERT中为什么要在Attention计算中除以根号D¹。

Attention计算中除以根号D是为了防止点积结果过大导致梯度消失的问题。点积结果的大小是跟向量维度D成正比的,如果D很大,那么点积结果也会很大,经过Softmax函数后,梯度就会变得很小,影响模型的优化。除以根号D后可以让Attention的权重分布方差为1,而不是D,从而缓解梯度消失的问题。

7、请举例说明如何使用BERT进行下游任务的微调²³。

使用BERT进行下游任务的微调的一般步骤如下:
首先,选择一个预训练好的BERT模型,根据任务类型和数据规模选择合适的模型规模和版本。
然后,根据任务需求,在BERT模型的最后一层添加一些额外的层,例如分类层,序列标注层,或者问答层等。这些层通常很简单,只有少量的参数。
接着,将下游任务的数据转换为BERT模型能够接受的格式,例如添加特殊标记[CLS]和[SEP],进行WordPiece切分,生成Segment Embedding和Position Embedding等。
最后,使用下游任务的标签进行微调训练,通常只需要几个epoch就可以达到很好的效果。微调训练时可以冻结部分或全部BERT模型参数,或者使用较小的学习率和较大的权重衰减等策略,以防止过拟合或破坏预训练好的语言表示。

8、请比较BERT和GPT的异同点¹²。

BERT和GPT都是基于Transformer结构的预训练模型,都使用了大规模语料库进行无监督学习,都能够在多种下游任务中取得显著提升。
BERT和GPT最大的不同点在于预训练任务和网络结构上。GPT使用了Transformer的Decoder部分作为网络结构,并且只进行了单向语言模型(LM)的预训练任务。单向语言模型是指给定前文去预测当前词或给定后文去预测当前词。GPT更适用于文本生成类的任务。BERT使用了Transformer的Encoder部分作为网络结构,并且进行了两个预训练任务:Masked Language Model(MLM)和Next Sentence Prediction(NSP)。MLM是指在输入序列中随机
Received message. 以下是我根据网络搜索结果生成的一些可能的答案: - BERT中为什么要使用WordPiece而不是分词? - WordPiece是一种将词切分为更细粒度的子词的方法,它的核心思想是根据子词的组合频率,从字符开始逐步合并成更长的子词,直到达到预设的词表大小。WordPiece的作用是减少未登录词(OOV)的问题,提高模型的泛化能力和覆盖范围。例如,一个生僻词cosplayer,如果使用分词,可能会被标记为UNK,而WordPiece可以将它切分为cos##play##er,模型可以利用词根和前缀后缀等信息,学习到这个词的大致含义,而不是一个未知符号。 - BERT中为什么要在Attention计算中除以根号D? - Attention计算中除以根号D是为了防止点积结果过大导致梯度消失的问题。点积结果的大小是跟向量维度D成正比的,如果D很大,那么点积结果也会很大,经过Softmax函数后,梯度就会变得很小,影响模型的优化。除以根号D后可以让Attention的权重分布方差为1,而不是D,从而缓解梯度消失的问题。 - 如何使用BERT进行下游任务的微调? - 使用BERT进行下游任务的微调的一般步骤如下: - 首先,选择一个预训练好的BERT模型,根据任务类型和数据规模选择合适的模型规模和版本。 - 然后,根据任务需求,在BERT模型的最后一层添加一些额外的层,例如分类层,序列标注层,或者问答层等。这些层通常很简单,只有少量的参数。 - 接着,将下游任务的数据转换为BERT模型能够接受的格式,例如添加特殊标记[CLS]和[SEP],进行WordPiece切分,生成Segment Embedding和Position Embedding等。 - 最后,使用下游任务的标签进行微调训练,通常只需要几个epoch就可以达到很好的效果。微调训练时可以冻结部分或全部BERT模型参数,或者使用较小的学习率和较大的权重衰减等策略,以防止过拟合或破坏预训练好的语言表示。 - BERT和GPT的异同点有哪些? - BERT和GPT都是基于Transformer结构的预训练模型,都使用了大规模语料库进行无监督学习,都能够在多种下游任务中取得显著提升。 - BERT和GPT最大的不同点在于预训练任务和网络结构上。GPT使用了Transformer的Decoder部分作为网络结构,并且只进行了单向语言模型(LM)的预训练任务。单向语言模型是指给定前文去预测当前词或给定后文去预测当前词。GPT更适用于文本生成类的任务。BERT使用了Transformer的Encoder部分作为网络结构,并且进行了两个预训练任务:Masked Language Model(MLM)和Next Sentence Prediction(NSP)。MLM是指在输入序列中随机遮盖一些词,然后让模型预测被遮盖的词。这样做的目的是让模型能够利用双向的上下文信息,学习到更丰富和通用的语言表示。NSP是指给定两个句子,让模型判断它们是否是连续的。这样做的目的是让模型能够学习到句子之间的关系,从而更好地处理句子对类的任务。BERT更适用于文本理解类的任务。

Source: Conversation with Bing, 2023/5/12
(1) BERT相关面试题(不定期更新) - 知乎. https://zhuanlan.zhihu.com/p/151412524.
(2) 读懂BERT,看这一篇就够了 - 知乎. https://zhuanlan.zhihu.com/p/403495863.
(3) 图解BERT:通俗的解释BERT是如何工作的 - 知乎. https://zhuanlan.zhihu.com/p/364966458.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值