为什么要划分训练集、验证集、测试集?

训练集、验证集、测试集的定义如下:


训练集:用来学习的样本集,用于分类器参数的拟合。


验证集:用来调整分类器超参数的样本集,如在神经网络中选择隐藏层神经元的数量。

测试集:仅用于对已经训练好的分类器进行性能评估的样本集。


引用于:业界 | 似乎没区别,但你混淆过验证集和测试集吗?



在我们使用验证集作为调整模型的超参数的时候,其实是在让模型拟合甚至过拟合验证集,故而再使用验证集来评估模型是不恰当的,也是无法实现目的的。故应使用测试集来进行评估。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值