训练集、验证集、测试集的定义如下:
训练集:用来学习的样本集,用于分类器参数的拟合。
验证集:用来调整分类器超参数的样本集,如在神经网络中选择隐藏层神经元的数量。
测试集:仅用于对已经训练好的分类器进行性能评估的样本集。
在我们使用验证集作为调整模型的超参数的时候,其实是在让模型拟合甚至过拟合验证集,故而再使用验证集来评估模型是不恰当的,也是无法实现目的的。故应使用测试集来进行评估。
训练集、验证集、测试集的定义如下:
训练集:用来学习的样本集,用于分类器参数的拟合。
测试集:仅用于对已经训练好的分类器进行性能评估的样本集。
在我们使用验证集作为调整模型的超参数的时候,其实是在让模型拟合甚至过拟合验证集,故而再使用验证集来评估模型是不恰当的,也是无法实现目的的。故应使用测试集来进行评估。