Linux环境配置mmlab环境

该文提供了安装MMCV的详细步骤,包括创建mmlabconda环境,安装pytorch1.12.1,使用mim工具安装mmcv-full,如果需要,从源码编译MMCV,并提供了验证安装是否成功的脚本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考链接
https://mmcv.readthedocs.io/zh_CN/latest/get_started/build.html
https://github.com/open-mmlab/mmsegmentation/blob/v0.13.0/docs/get_started.md#installation

安装的各项版本如下所示:
在这里插入图片描述

一、建立 mmlab conda 环境

1、新建一个conda环境

conda create -n mmlab python=3.7

2、激活环境

conda activate mmlab

二、安装 pytorch

pytorch官网

### SegFormer 环境配置教程 #### 创建虚拟环境并激活 为了确保项目的依赖项不会影响其他Python项目,推荐创建独立的虚拟环境。通过以下命令可以完成这一操作: ```bash python -m venv segformer-env source segformer-env/bin/activate # Linux 或 macOS 用户 # 对于 Windows 用户应使用下面这条指令来启动虚拟环境 segformer-env\Scripts\activate ``` 这一步骤有助于保持开发环境整洁有序,并减少不同库版本冲突的可能性[^1]。 #### 安装必要的软件包 一旦虚拟环境被成功激活之后,下一步就是安装所需的Python库和其他工具。通常情况下,可以通过`requirements.txt`文件来进行批量安装,也可以手动执行pip install语句逐一添加所需模块。具体做法如下所示: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu113/index.html pip install git+https://github.com/open-mmlab/mmsegmentation.git@main ``` 上述命令会下载PyTorch框架及其扩展组件、MMCV以及MMSegmentation库——这些都是运行SegFormer所必需的核心要素之一。 #### 设置GPU可见性和分配策略 如果计划利用多张显卡加速计算过程,则需提前设定好哪些设备可供程序访问。可通过修改环境变量的方式实现这一点,在Python脚本内部可采用如下方式定义可用的GPU列表: ```python import os os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2' ``` 此段代码使得只有编号为0、1和2三块图形处理器能够参与后续的任务处理工作;当然,实际应用时可根据个人情况调整具体的ID数值[^2]。 #### 修改配置参数与路径 最后要做的准备工作便是编辑实验配置文件中的某些选项,比如指定数据集位置、保存结果的位置等重要信息。对于给定的例子而言,应当关注以下几个方面: - **配置文件路径**: `/data1/timer/Segmentation/SegFormer/local_configs/segformer/B5/segformer.b5.640x640.ade.160k.py` - **日志及模型存储目录**: `res_MFNet` 另外还需注意的是关于GPU ID的选择,默认值设定了仅使用第零号GPU (`default=[0]`) ,但可以根据实际情况更改成其他的整数数组形式以适应不同的硬件条件[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值