1 题目
题目:三数之和(3Sum)
描述:给出一个有n个整数的数组S,在S中找到三个整数a, b, c,找到所有使得a + b + c = 0的三元组。三元组(a, b, c)要求a≤b≤c。结果不能包含重复的三元组。
lintcode题号——57,难度——medium
样例1:
输入:numbers = [2,7,11,15]
输出:[]
解释:找不到三元组使得三个数和为0。
样例2:
输入:numbers = [-1,0,1,2,-1,-4]
输出:[[-1, 0, 1],[-1, -1, 2]]
解释:[-1, 0, 1]和[-1, -1, 2]是符合条件的2个三元组。
2 解决方案
2.1 思路
考虑循环遍历数组,固定其中一个数,再在剩下的子数组中找到和为目标值的两数即可。
2.2 时间复杂度
外层循环时间复杂度O(n),twoSum的时间复杂度O(n),总时间复杂度为O(n^2)。
2.3 空间复杂度
使用了vector数据结构,空间复杂度为O(n)。
3 源码
细节:
- 先对数组进行排序。
- 使用循环固定其中一个数,再进行twoSum——在子数组中找到和为目标值的两数。
- 因为需要去重,所以先排序,跳过与前一个数相同的数,在第一个数的循环和twoSum循环中都需要做去重。
C++版本:
/**
* @param numbers: Give an array numbers of n integer
* @return: Find all unique triplets in the array which gives the sum of zero.
*/
vector<vector<int>> threeSum(vector<int> &numbers) {
// write your code here
vector<vector<int>> results;
if (numbers.empty())
{
return results;
}
// 先对数组排序
sort(numbers.begin(), numbers.end());
// 固定其中一个数,再对后面的数组进行twoSum()
for (int i = 0; i < numbers.size() - 2; i++)
{
//第一个数去重
if (i != 0 && numbers.at(i) == numbers.at(i - 1))
{
continue;
}
int target = -numbers.at(i);
vector<vector<int>> temp = twoSum(numbers, i + 1, numbers.size() - 1, target);
for (auto it : temp)
{
it.insert(it.begin(), numbers.at(i));
results.push_back(it);
}
}
return results;
}
vector<vector<int>> twoSum(vector<int> & numbers, int left, int right, int target)
{
vector<vector<int>> results;
while (left < right)
{
if (numbers.at(left) + numbers.at(right) < target)
{
left++;
}
else if (numbers.at(left) + numbers.at(right) > target)
{
right--;
}
else
{
vector<int> temp;
temp.push_back(numbers.at(left));
temp.push_back(numbers.at(right));
results.push_back(temp);
left++;
right--;
// twoSum中也需要去重
while (left < right && numbers.at(left) == numbers.at(left - 1))
{
left++;
}
while (left < right && numbers.at(right) == numbers.at(right + 1))
{
right--;
}
}
}
return results;
}