如何计算指标波动贡献率?(附Pandas实现)

本文介绍了计算指标波动贡献率的概念和方法,包括可加型指标和乘法型指标。通过案例分析和Pandas实现,展示了如何量化各个维度对指标波动的影响,帮助数据分析师更高效地进行归因分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是阿粥

“为什么这个月销售额提升了30%?”

“为什么转化率又降了,同比竟然降低了42%,什么原因导致的呢?”

这些都是数据分析师在工作中经常会遇到的问题,甚至有些基础岗的数据分析师要花80%以上的精力处理这类问题:指标降低或者提升了多少,以及波动的原因是什么。

这类问题可以概括为指标波动归因分析,很多时候用的是根据经验探索拆分的办法,非常占用数据分析师的时间,而且数据分析师获得的价值感也不高。

如果能够找到一些高效定位指标波动原因的方法,形成自动化判断机制,就能大大解放数据分析师的精力,使其能够把更多时间用在专题分析和推动业务上。

今天先讲解几种常见的计算指标波动贡献率的方法,量化波动来源。


一、什么是指标波动贡献率

当核心指标发生了波动,例如销售额从100万元上升到1000万元,分析师的活儿就来了,这个指标的波动可以从多个维度拆解。

  • 渠道维度:天猫渠道、京东渠道、线下渠道等。

  • 新老用户维度:新用户和老用户。

  • 用户属性维度:不同年龄、消费力、兴趣偏好、地区。

  • 其他底层数据能够支持的维度

能拆解的维度很多很多,一般来说,数据分析师根据自身经验,会选择一两个主要的维度优先进行拆解和验证。

例如从渠道维度进行拆解,可以进一步细分为A渠道、B渠道、C渠道三个元素。我们实际关注的是,A、B、C每一个渠道销售额的变化对于整体销售额波动到底有多大影响。

为了量化每一个元素对总体波动的影响程度,我们引入了“贡献率”的概念。贡献率主要回答“每一个元素的变化对总体波动的贡献是多少”这个问题。通常,各元素贡献率之和等于100%,正好可以完全解释总体波动。

需要强调的是,为了避免概念产生歧义,在本章的销售拆解中,渠道、用户、地区是指不同的维度渠道下面具体的渠道值A、B、C称为不同的元素。

对于不同类型的指标,有与之对应的不同的贡献率计算方法。


二、可加型指标

1、计算逻辑

可加型指标是指那些数值可以直接相加的指标,例如访客数、销量、销售额。这里以一个简单的案例来介绍可加型指标的计算方法,案例数据如表14-1所示。

表14-1 可加型指标基础数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值