大家好,我是阿粥
“为什么这个月销售额提升了30%?”
“为什么转化率又降了,同比竟然降低了42%,什么原因导致的呢?”
这些都是数据分析师在工作中经常会遇到的问题,甚至有些基础岗的数据分析师要花80%以上的精力处理这类问题:指标降低或者提升了多少,以及波动的原因是什么。
这类问题可以概括为指标波动归因分析,很多时候用的是根据经验探索拆分的办法,非常占用数据分析师的时间,而且数据分析师获得的价值感也不高。
如果能够找到一些高效定位指标波动原因的方法,形成自动化判断机制,就能大大解放数据分析师的精力,使其能够把更多时间用在专题分析和推动业务上。
今天先讲解几种常见的计算指标波动贡献率的方法,量化波动来源。
一、什么是指标波动贡献率
当核心指标发生了波动,例如销售额从100万元上升到1000万元,分析师的活儿就来了,这个指标的波动可以从多个维度拆解。
渠道维度:天猫渠道、京东渠道、线下渠道等。
新老用户维度:新用户和老用户。
用户属性维度:不同年龄、消费力、兴趣偏好、地区。
其他底层数据能够支持的维度
能拆解的维度很多很多,一般来说,数据分析师根据自身经验,会选择一两个主要的维度优先进行拆解和验证。
例如从渠道维度进行拆解,可以进一步细分为A渠道、B渠道、C渠道三个元素。我们实际关注的是,A、B、C每一个渠道销售额的变化对于整体销售额波动到底有多大影响。
为了量化每一个元素对总体波动的影响程度,我们引入了“贡献率”的概念。贡献率主要回答“每一个元素的变化对总体波动的贡献是多少”这个问题。通常,各元素贡献率之和等于100%,正好可以完全解释总体波动。
需要强调的是,为了避免概念产生歧义,在本章的销售拆解中,渠道、用户、地区是指不同的维度,而渠道下面具体的渠道值A、B、C称为不同的元素。
对于不同类型的指标,有与之对应的不同的贡献率计算方法。
二、可加型指标
1、计算逻辑
可加型指标是指那些数值可以直接相加的指标,例如访客数、销量、销售额。这里以一个简单的案例来介绍可加型指标的计算方法,案例数据如表14-1所示。
表14-1 可加型指标基础数据