目录
一、背景
在根因分析中,除了灵活的维度和指标层级拆解,我们还需要在拆解过程中找出对分析目标影响最大的因素,以此来达到交互式根因分析的效果。
二、目标
本文主要调研在进行指标和维度拆解过程中,对于维值/指标成员的波动贡献的衡量方式,以此为分解树的根因分析功能
三、方案
首先,在处理数据前,我们需要区分非时序数据和时序数据,其原因在于非时序数据由于不具有时间维度,找不到对比对象,无法很好地衡量波动性。
在没有波动衡量指标的前提下也就无法衡量贡献度了,这种场景下可以理解为分析转为了占比贡献(即查看构成中的主要组成部分),或是针对下级维值/指标的独立分析(但此时用分解树组件展示效果不佳)。
3.1 非时序数据
非时序数据由于其不具有可对比的基期或预测值,进行贡献计算时可选方法比较有限。
3.1.1 占比贡献(仅限于加和拆解)
在非时序数据中,我们可以采用占比来对整体构成进行解释。
占比贡献仅仅可以用来对维度拆解或是加和类型的指标拆解来进行解释。
如下图所示,最终的产出结论类似于:“2016年11月的日均成交金额为11,670,其中贡献最大的是行业1,一共贡献了3,488,贡献率为30%。”