【已解决】anaconda配环境“solving environment“卡住(linux)

跑别人的代码,用命令:conda env create -f xxxxx.yml

配环境时,发现卡在solving environment这一步(十多分钟,查资料看到有卡了几个小时成功了的,但我通过以下方法实现了提速)

1 更换镜像源

conda info

↑查看源信息,如果已经换过源了就不需要了

sudo gedit .condarc

↑修改配置文件(注意确认当前所处目录是"~")

anaconda | 镜像站使用帮助 | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

↑把框中的内容复制到.condarc中,保存退出

注:如果没有.condarc文件,可以运行conda config --set show_channel_urls yes,也可以在sudo之前提前运行

2 conda clean -i

清除缓存

3 conda upgrade conda

这一步的意思应该是更新conda, 本来觉得应该没必要的,但因为solving environment还是很卡,所以更新了

如有问题可以尝试重启,我重启了一两次

附:conda config --remove-key channels 恢复默认源

<think>嗯,我现在遇到了一个问题,就是我在使用conda安装tensorboard的时候,安装过程卡在了“solving environment”这个步骤,不知道该怎么办。首先,我需要理解为什么会卡在这个步骤。可能的原因有很多,比如conda需要解决的依赖关系太复杂,或者仓库中的包版本冲突,导致conda在寻找合适的依赖组合时耗时过长。这时候,我应该如何终止这个卡住的过程呢? 我记得在Linux或者macOS中,通常可以使用Ctrl+C来终止正在运行的终端命令,但不确定在conda这种情况下是否有效。可能需要多按几次,或者使用其他方法。另外,如果Ctrl+C不起作用,可能需要查找进程ID然后强制结束。不过我对进程管理不是很熟悉,得查一下具体步骤。 另外,解决环境问题可能需要优化conda置,比如添加更快的镜像源,或者使用更高效的求解器。比如,conda有mamba这个替代的依赖解析工具,安装mamba可能会加快解决环境的速度。但我不太确定怎么用mamba代替conda命令,可能需要先安装mamba,然后用mamba install来代替conda install。 还有,可能当前的环境中有很多已经安装的包,导致依赖关系复杂。这时候,创建一个新的干净环境来安装tensorboard可能会有帮助。不过创建新环境的话,需要重新安装其他依赖包,可能会比较麻烦,但至少可以避免现有环境的冲突。 另外,有时候设置conda的通道优先级或者限制包版本可以减少解析时间。比如,指定tensorboard的版本,或者明确指定依赖的其他包的版本,这样conda不需要在太多版本中搜索,可能更快解决环境问题。 我还需要考虑conda置是否正确,比如.condarc文件有没有设置合适的通道和超时时间。如果网络连接不好,或者镜像源响应慢,也可能导致卡住。可以尝试更换镜像源,比如清华的镜像或者其他的conda源,看看是否有效。 总结一下,我需要先终止当前的卡住进程,然后尝试优化conda置或使用替代工具来加快解决环境的速度。如果问题依旧,可能需要创建新环境或者手动指定版本来减少依赖冲突的可能性。</think>### 终止 conda install 卡在 "solving environment" 的方法 #### 1. **强制终止当前进程** - **Linux/macOS**:在终端中按组合键 `Ctrl+C` 多次尝试终止。若无效,可通过以下步骤强制结束: ```bash ps aux | grep conda # 查找 conda 进程的 PID kill -9 <PID> # 替换为实际进程号 ``` - **Windows**:打开任务管理器,结束 `conda.exe` 或相关进程[^1]。 #### 2. **优化 conda 置** - **使用更快的镜像源**:在 `.condarc` 中添加清华镜像源加速下载: ```yaml channels: - defaults show_channel_urls: true default_channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2 channel_priority: flexible ``` - **限制依赖解析范围**:指定 TensorBoard 版本以减少冲突: ```bash conda install tensorboard=<版本号> ``` #### 3. **使用替代工具加速依赖解析** - **安装 Mamba**:Mamba 是 conda 的快速替代品: ```bash conda install -n base conda-forge::mamba mamba install tensorboard ``` #### 4. **创建新环境隔离依赖** ```bash conda create -n tf_env python=3.9 # 新建独立环境 conda activate tf_env conda install tensorboard # 在干净环境中重试 ``` #### 5. **手动解决依赖冲突** - 若明确需要其他包,可逐步安装核心依赖: ```bash conda install tensorflow # 先安装 TensorFlow conda install tensorboard # 再单独安装 TensorBoard ``` ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值