从代码出发 Diffusion 的train 和 inference 您 懂了吗?

本文解释了Diffusion模型中Train(基于真实Mel生成带噪样本并预测噪声)和Inference(使用预设噪声和条件预测去噪过程)的过程,强调了噪声处理和条件适应的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Diffusion 的train 和 inference 您 懂了吗?

从代码出发

一张图说明 Train & Inference

train的过程:

  1. 给定 真实mel, 然后随机 t 步 噪声, 加到真实mel, 生成带噪的mel
  2. 通过方差适配器输出的 cond 和 步数 t, 以及带噪mel。 预测噪声。
    (注意, 这个为了和inference 保持一致, 在推理时需要类似 带噪mel、cond、t 这个三个输入, 才能预测噪声, 带噪mel减去预测噪声,就是真实mel了)
    inference:
  3. 随机出一个 噪声x(假设这是符合高斯分布的 带噪mel), 然后输入噪声x,与方差适配器输出的cond,以及预设的步骤t 到训练好的去噪器(denoise) 来预测噪声
  4. 噪声x - 预测噪声 = 预测的mel, 也即是合成的mel

在这里插入图片描述

Stable Diffusion 是由 Stability AI 公司开发的一款预训练人工智能模型,主要用于生成高质量的文本,但它不是开源项目,所以直接获取其源代码是不可能的。通常,像 GPT-3、DALL-E 2 这样的大型预训练模型的源代码是不对外公开的,因为这涉及到大量的商业机密和技术细节。 如果你对自然语言处理(NLP)的开源工具库感兴趣,例如像 Hugging Face 的 transformers 库,它提供了基于 Transformer架构的模型,你可以通过 GitHub 获取源代码并进行学习和使用。对于自定义模型或深度学习项目,你可能会编写自己的代码,包括模型训练、微调和部署的部分。 要获取和使用开源 NLP 模块,可以按照以下步骤操作: 1. **选择开源库**:研究并选择一个适合你的需求的开源 NLP 库,比如 TensorFlow, PyTorch 或者 fastai。 2. **克隆仓库**:使用 Git 工具从 GitHub (https://github.com/huggingface/transformers) 或其他代码托管平台下载源代码。 3. **安装依赖**:确保你的开发环境安装了必要的 Python 包和框架(如 pip install transformers)。 4. **了解API**:阅读文档和教程,理解如何加载模型、进行前处理和生成文本。 5. **编写代码**:根据你的项目需求,编写代码来加载模型、提供输入、处理输出等。 6. **训练和微调**:如果模型需要训练或微调,按照库提供的指南进行。 7. **评估性能**:通过测试数据验证模型的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值