方阵的特征值与特征向量-学习笔记

仅供学习使用

A A A n n n阶矩阵,如果数 λ λ λ n n n维非零列向量 x x x,使得关系式 A x = λ x Ax=λx Ax=λx成立,那么,这样的系数 λ λ λ称为矩阵 A A A特征值,非零向量 x x x称为 A A A的对应于特征值λ的特征向量


例5

例5:求矩阵 A = ( 3 − 1 − 1 3 ) A=\begin{pmatrix}3 & -1 \\-1 &3 \end{pmatrix} A=(3113)的特征值和特征向量。

解:
A A A的特征多项式为
∣ A − λ E ∣ = ∣ 3 − λ − 1 − 1 3 − λ ∣ |A-λE|=\begin{vmatrix}3-λ & -1 \\-1 & 3-λ \end{vmatrix} AλE=3λ113λ
= ( 3 − λ ) 2 − 1 = 8 − 6 λ + λ 2 =(3-λ)^{2}-1=8-6λ+λ^2 =(3λ)21=86λ+λ2
= ( 2 − λ ) ( 4 − λ ) = 0 =(2-λ)(4-λ)=0 =(2λ)(4λ)=0
所以 λ 1 = 2 λ_{1}=2 λ1=2 λ 2 = 4 λ_{2}=4 λ2=4

  • λ 1 = 2 λ_{1}=2 λ1=2时,对应的特征向量满足
    ( 3 − 2 − 1 − 1 3 − 2 ) ( x 1 x 2 ) = ( 0 0 ) \begin{pmatrix}3-2 & -1 \\-1 & 3-2 \end{pmatrix} \begin{pmatrix}x_{1} \\ x_{2} \end{pmatrix}=\begin{pmatrix}0 \\0 \end{pmatrix} (321132)(x1x2)=(00)

    ( 1 − 1 − 1 1 ) ( x 1 x 2 ) = ( 0 0 ) \begin{pmatrix}1 & -1 \\-1 & 1 \end{pmatrix} \begin{pmatrix}x_{1} \\ x_{2} \end{pmatrix}=\begin{pmatrix}0 \\0 \end{pmatrix} (1111)(x1x2)=(00)
    解得 x 1 = x 2 x_{1}=x_{2} x1=x2,所以对应的特征向量可取为 p 1 = ( 1 1 ) p_{1}=\begin{pmatrix}1 \\1 \end{pmatrix} p1=(11)

  • λ 2 = 4 λ_{2}=4 λ2=4时,对应的特征向量满足
    ( 3 − 4 − 1 − 1 3 − 4 ) ( x 1 x 2 ) = ( 0 0 ) \begin{pmatrix}3-4 & -1 \\-1 & 3-4 \end{pmatrix} \begin{pmatrix}x_{1} \\ x_{2} \end{pmatrix}=\begin{pmatrix}0 \\0 \end{pmatrix} (341134)(x1x2)=(00)

    ( − 1 − 1 − 1 − 1 ) ( x 1 x 2 ) = ( 0 0 ) \begin{pmatrix}-1 & -1 \\-1 & -1 \end{pmatrix} \begin{pmatrix}x_{1} \\ x_{2} \end{pmatrix}=\begin{pmatrix}0 \\0 \end{pmatrix} (1111)(x1x2)=(00)
    解得 x 1 = − x 2 x_{1}=-x_{2} x1=x2,所以对应的特征向量可取为 p 1 = ( − 1 1 ) p_{1}=\begin{pmatrix}-1 \\1 \end{pmatrix} p1=(11)


例6

例6:求矩阵 A = ( − 1 1 0 − 4 3 0 1 0 2 ) A=\begin{pmatrix}-1 & 1 &0 \\-4 & 3 &0 \\1 &0 &2 \end{pmatrix} A=141130002的特征值和特征向量。

解:
A A A的特征多项式为
∣ A − λ E ∣ = ∣ − 1 − λ 1 0 − 4 3 − λ 0 1 0 2 − λ ∣ |A-λE|=\begin{vmatrix}-1-λ & 1 &0 \\-4&3-λ &0 \\ 1 & 0 & 2-λ \end{vmatrix} AλE=1λ4113λ0002λ
= ( − 1 − λ ) ( 3 − λ ) ( 2 − λ ) + 4 ( 2 − λ ) =(-1-λ)(3-λ)(2-λ)+4(2-λ) =(1λ)(3λ)(2λ)+4(2λ)
= ( 2 − λ ) [ ( 1 + λ ) ( λ − 3 ) + 4 ] =(2-λ)[(1+λ)(λ-3)+4] =(2λ)[(1+λ)(λ3)+4]
= ( 2 − λ ) ( λ − 3 + λ 2 − 3 λ + 4 ) =(2-λ)(λ-3+λ^2-3λ+4) =(2λ)(λ3+λ23λ+4)
= ( 2 − λ ) ( λ 2 − 2 λ + 1 ) =(2-λ)(λ^2-2λ+1) =(2λ)(λ22λ+1)
= ( 2 − λ ) ( λ − 1 ) 2 =(2-λ)(λ-1)^2 =(2λ)(λ1)2
所以 A A A的特征值 λ 1 = 2 λ_{1}=2 λ1=2 λ 2 = λ 3 = 1 λ_{2}=λ_{3}=1 λ2=λ3=1

  • λ 1 = 2 λ_{1}=2 λ1=2时,对应的特征向量满足
    ( − 3 1 0 − 4 1 0 1 0 0 ) ( x 1 x 2 x 3 ) = ( 0 0 0 ) \begin{pmatrix}-3 & 1 &0 \\-4 &1 &0 \\1 &0 & 0 \end{pmatrix} \begin{pmatrix}x_{1} \\ x_{2} \\x_{3} \end{pmatrix}=\begin{pmatrix}0 \\0 \\0 \end{pmatrix} 341110000x1x2x3=000

    ( 1 0 0 0 1 0 0 0 0 ) ( x 1 x 2 x 3 ) = ( 0 0 0 ) \begin{pmatrix}1 & 0 &0 \\0 &1 &0 \\0 &0 & 0 \end{pmatrix} \begin{pmatrix}x_{1} \\ x_{2} \\x_{3} \end{pmatrix}=\begin{pmatrix}0 \\0 \\0 \end{pmatrix} 100010000x1x2x3=000
    得基础解系 p 1 = ( 0 0 1 ) p_{1}=\begin{pmatrix}0 \\0 \\1 \end{pmatrix} p1=001

  • λ 2 = λ 3 = 1 λ_{2}=λ_{3}=1 λ2=λ3=1时,对应的特征向量满足
    ( − 2 1 0 − 4 2 0 1 0 1 ) ( x 1 x 2 x 3 ) = ( 0 0 0 ) \begin{pmatrix}-2 & 1 &0 \\-4 &2 &0 \\1 &0 & 1 \end{pmatrix} \begin{pmatrix}x_{1} \\ x_{2} \\x_{3} \end{pmatrix}=\begin{pmatrix}0 \\0 \\0 \end{pmatrix} 241120001x1x2x3=000

    ( 1 0 1 0 1 2 0 0 0 ) ( x 1 x 2 x 3 ) = ( 0 0 0 ) \begin{pmatrix}1 & 0 &1 \\0 &1 &2 \\0 &0 &0 \end{pmatrix} \begin{pmatrix}x_{1} \\ x_{2} \\x_{3} \end{pmatrix}=\begin{pmatrix}0 \\0 \\0 \end{pmatrix} 100010120x1x2x3=000
    得基础解系 p 1 = ( − 1 − 2 1 ) p_{1}=\begin{pmatrix}-1 \\-2 \\1 \end{pmatrix} p1=121


例7

求矩阵
A = ( − 2 1 1 0 2 0 − 4 1 3 ) A=\begin{pmatrix}-2 &1&1\\0&2&0\\-4&1&3 \end{pmatrix} A=204121103的特征值和特征向量。

按照行列式,解得特征值 λ 1 = λ 2 = 2 , λ 3 = − 1 λ_{1}=λ_{2}=2, λ_{3}=-1 λ1=λ2=2,λ3=1

  • λ 1 = λ 2 = 2 λ_{1}=λ_{2}=2 λ1=λ2=2时,解方程 ( A − 2 E ) x = 0 (A-2E)x=0 (A2E)x=0

    ( − 4 1 1 0 0 0 − 4 1 1 ) ( x 1 x 2 x 3 ) = 0 \begin{pmatrix}-4 &1&1\\0&0&0\\-4&1&1 \end{pmatrix}\begin{pmatrix}x_{1}\\x_{2}\\x_{3} \end{pmatrix}=0 404101101x1x2x3=0
    求得基础解系
    p 1 = ( 1 0 4 ) , p 2 = ( 0 1 − 1 ) p_{1}=\begin{pmatrix}1\\0\\4\end{pmatrix}, p_{2}=\begin{pmatrix}0\\1\\-1\end{pmatrix} p1=104,p2=011
  • λ 3 = − 1 λ_{3}=-1 λ3=1时,解方程 ( A + E ) x = 0 (A+E)x=0 (A+E)x=0

    ( − 1 1 1 0 3 0 − 4 1 4 ) ( x 1 x 2 x 3 ) = 0 \begin{pmatrix}-1 &1&1\\0&3&0\\-4&1&4 \end{pmatrix}\begin{pmatrix}x_{1}\\x_{2}\\x_{3} \end{pmatrix}=0 104131104x1x2x3=0
    亦即
    ( 1 0 − 1 0 1 0 0 0 0 ) ( x 1 x 2 x 3 ) = 0 \begin{pmatrix}1 &0&-1\\0&1&0\\0&0&0 \end{pmatrix}\begin{pmatrix}x_{1}\\x_{2}\\x_{3} \end{pmatrix}=0 100010100x1x2x3=0
    可得到基础解系:
    p 1 = ( 1 0 1 ) p_{1}=\begin{pmatrix}\\1\\0\\1\end{pmatrix} p1=101
  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值