第二节 方阵的特征值与特征向量

 一 .数学概念

.特征值与特征向量

An阶方阵,若数  n维的非零列向量x,使关系式Ax=λx成立,则称数λ为方阵A的特征值,非零向量x称为A的对应与特征值  的特征向量。

2 .特征多项式

3 .特征方程

 二 .原理,公式和法则

1 .求特征值与特征向量的方法

(1)                             (实用于抽象矩阵);

(2)                          (实用于具体矩阵);

(3)                        (主要用于求特征向量)。

2 .主要公式

  A的特征值,xA的对应于特征值  所对应的特征向量,则有

     

注:  特征值与特征向量指A可逆时。

3 .特征值与特征向量的性质

  An个特征值,则有

1) 

2) 

3) A可逆的充分必要条件是A没有零特征值。

4) A不可逆的充分必要条件是A有零特征值。

5) 方阵A不同的特征值对应的特征值是线性无关的。

 三 .重点、难点分析

本节的重点是理解特征值也特征向量的概念,求A的特征值与特征向量,掌握求特征值与特征向量的各种方法。难点是方阵A不同的特征值所对应的特征向量线性无关的证明;求方阵A特征值与特征向量的各种方法。

 四 .典型例题

例1 .求方阵   

的特征值和特征向量。

: A的特征多项式为

        

所以A的特征值为  

  时,解方程 (A-2E)x=0。由

       

得基础解系 

 

所以  是对应于  的全部特征向量。

  ,解方程(A-E)x=0。由

得基础解系


 

所以  是对应于  的全部特征向量。

例2 .求矩阵

            

的特征值和特征向量。

解 

所以A的特征值为  

  时,解方程(A+E)x=0。由

*        

得基础解系

    

所以  是对应于  的全部特征向量。 

  时,解方程(A-2E)x=0。由

*        

得基础解系 

   

所以对应于  的全部特征向量为

*             

 

以上例1、例2都有二重特征值,而例1中的二重特征值对应两个线性相关的特征向量,例2中二重特征值对应两个线性无的特征向量,这对于下面将要学习的方阵对角化是分重要的,希望引起同学们的注意。

 

例3 .设3阶方阵A满足  ,且矩阵A的秩为2,求A的特征值。

:设  A的特征值,xA的关于  所对应的特征向量,则有  ,在  是两端右乘x,得

     

即  

即  

由于  ,所以

得   

A的秩为2,得A的特征值为 

例3是一个抽象矩阵求特征值的问题,由所给的已知条件求出  ,再根据约束条件(例A的秩等于2)确定A的特征值。

 

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值