深度学习 | 卷积神经网络

1. 整体结构

  1. 卷积神经网络(CNN):多了卷积层(Convolution层)和池化层(Pooling层)。
  2. 全连接(fully-connected):相邻层的所有神经元之间都有连接。另外,我们用Affine层实现了全连接层。
  3. 基于全连接层(Affine层)的网络:
    全连接层的网络
    全连接的神经网络中,Affine层后面跟着激活函数ReLU层(或者Sigmoid层)。这里堆叠了4层“Affine-ReLU”组合,然后第5层是Affine层,最后由Softmax层输出最终结果(概率)。
  4. 基于CNN的网络:基于CNN的网络
    CNN 的层的连接顺序是“Convolution - ReLU -(Pooling)”(Pooling层有时会被省略)。这可以理解为之前的“Affine - ReLU”连接被替换成了“Convolution - ReLU -(Pooling)”连接。
    靠近输出的层中使用了之前的“Affi ne - ReLU”组合。此外,最后的输出层中使用了之前的“Affine - Softmax”组合。

2. 卷积层

2.1 全连接层存在的问题

  1. 全连接层的问题:数据的形状被“忽视”了。比如,输入数据是图像时,图像通常是高、长、通道方向上的3维形状。但是,向全连接层输入时,需要将3维数据拉平为1维数据。
  2. 卷积层:可以保持形状不变。。当输入数据是图像时,卷积层会以3维数据的形式接收输入数据,并同样以3维数据的形式输出至下一层。因此,在CNN中,可以(有可能)正确理解图像等具有形状的数据。
  3. 特征图:CNN中,卷积层的输入输出数据。卷积层的输入数据称为输入特征图(input feature map),输出数据称为输出特征图(output feature map)。

2.2 卷积运算

卷积运算
输入大小是(4, 4),滤波器大小是(3, 3),输出大小是(2, 2)。有的文献中也会用“核”这个词来表示这里所说的“滤波器”。
计算:各个位置上滤波器的元素和输入的对应元素相乘,然后再求和(有时将这个计算称为乘积累加运算)。
偏置:向应用了滤波器的元素加上某个固定值。

2.3 填充

  1. 在进行卷积层的处理之前,有时要向输入数据的周围填入固定的数据(比如0等),这称为填充(padding)。
  2. 使用填充主要是为了调整输出的大小。比如,对大小为(4, 4)的输入数据应用(3, 3)的滤波器时,输出大小变为(2, 2),相当于输出大小比输入大小缩小了 2个元素。这在反复进行多次卷积运算的深度网络中会成为问题。为什么呢?因为如果每次进行卷积运算都会缩小空间,那么在某个时刻输出大小就有可能变为 1,导致无法再应用卷积运算。
    为了避免出现这样的情况,就要使用填充。
    在刚才的例子中,将填充的幅度设为 1,那么相对于输入大小(4, 4),输出大小也保持为原来的(4, 4)。因此,卷积运算就可以在保持空间大小不变的情况下将数据传给下一层。

2.4 步幅

  1. 应用滤波器的位置间隔称为步幅(stride)。
    步幅为2
  2. 增大步幅后,输出大小会变小。而增大填充后,输出大小会变大。
  3. 已知填充和步幅,计算输出大小:
    假设输入大小为(H, W),滤波器大小为(FH, FW),输出大小为
    (OH, OW),填充为P,步幅为S。此时,输出大小可通过下式进行计算:
    输出大小

2.5 3维数据的卷积运算

  1. 图像是3维数据,除了高、长方向之外,还需要处理通道方向。
  2. 在3维数据的卷积运算中,输入数据和滤波器的通道数要设为相同的值。

3. 池化层

  1. 池化是缩小高、长方向上的空间的运算。
  2. Max池化:从目标区域获取最大值。
    在这里插入图片描述
    Average池化:是计算目标区域的平均值。
  3. 池化层的特征:
    1)没有要学习的参数
    池化层和卷积层不同,没有要学习的参数。池化只是从目标区域中取最大值(或者平均值),所以不存在要学习的参数。
    2)通道数不发生变化
    经过池化运算,输入数据和输出数据的通道数不会发生变化。
    3)对微小的位置变化具有鲁棒性(健壮)
    输入数据发生微小偏差时,池化仍会返回相同的结果。因此,池化对输入数据的微小偏差具有鲁棒性。

4. 具有代表性的CNN

  1. 在1998年首次被提出的CNN元祖LeNet
    LeNet
    和“现在的CNN”相比,LeNet有几个不同点:
    ①LeNet中使用sigmoid函数,而现在的CNN中主要使用ReLU函数。
    ②原始的LeNet中使用子采样(subsampling)缩小中间数据的大小,而现在的CNN中Max池化是主流。

  2. 2012年被提出的AlexNet。
    AlexNet
    与LeNet的不同:
    1)激活函数使用ReLU。
    2)使用进行局部正规化的LRN(Local Response Normalization)层。
    3)使用Dropout。(权值衰减,为了抑制过拟合。Dropout是一种在学习的过程中随机删除神经元的方法。)

小结

• CNN在此前的全连接层的网络中新增了卷积层和池化层。
• 使用im2col函数可以简单、高效地实现卷积层和池化层。
• 通过CNN的可视化,可知随着层次变深,提取的信息愈加高级。
• LeNet和AlexNet是CNN的代表性网络。
• 在深度学习的发展中,大数据和GPU做出了很大的贡献。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 深度学习是一种以模型来了解数据的机器学习技术,它利用多层神经网络来学习复杂的数据,从而实现自动的特征提取和分类等功能。卷积神经网络是一种深度学习技术,它利用卷积运算来学习图像和视频信息,实现对图像和视频的自动分析、识别和分类等功能。 ### 回答2: 深度学习人工智能领域中的一种学习方法,旨在模拟人脑神经网络的工作原理。它通过建立多层的神经网络结构,利用大量数据进行训练,自动提取和学习特征,从而实现对复杂数据的分析和处理。深度学习的目标是通过不断优化网络结构和参数,使得网络能够自动地从数据中学习到更加高层次、抽象的特征表示。 而卷积神经网络(Convolutional Neural Network,CNN)是深度学习中的一种重要网络结构。CNN主要用于处理具有网格结构的数据,例如图像、视频等。它通过卷积操作和池化操作,对输入数据进行特征提取和降维处理。卷积操作通过滑动的卷积核对数据进行卷积运算得到感知层,用于提取局部特征。而池化操作则通过降采样的方式减少数据维度,提高计算效率。 卷积神经网络的优势主要体现在以下几个方面:首先,卷积操作使得网络能够有效地利用输入数据的空间结构信息,从而减少参数数量,提高网络的泛化能力;其次,卷积神经网络通过多层结构,逐渐提取抽象的特征表示,能够处理具有复杂结构和高维度的数据;最后,卷积神经网络在图像识别、目标检测、语音识别等任务上表现出色,并在多个领域取得了重大突破。 总的来说,深度学习是一种模拟人脑神经网络的学习方法,通过建立多层网络结构从数据中获取高层次、抽象的特征表示。而卷积神经网络作为深度学习中的一种网络结构,在处理具有网格结构数据时具有重要作用,通过卷积和池化操作能够从图像等数据中提取特征、降维处理,广泛应用于图像识别、目标检测等领域。 ### 回答3: 深度学习是一种机器学习的方法,通过多层次的神经网络来学习和提取数据的特征。它模拟了人脑中神经元之间的信息传递和处理过程,具有优秀的自适应能力和泛化能力。 深度学习的核心是神经网络,而卷积神经网络(Convolutional Neural Network, CNN)是深度学习中的一类神经网络结构。它专门应用于处理图像和语音等具有结构化数据的任务。 卷积神经网络的特点是层次化的结构,通常由输入层、卷积层、池化层和全连接层等组成。其中,卷积层通过卷积操作对输入图像进行特征提取,可以捕捉到不同位置的局部特征。而池化层则通过降采样的方式减少计算量,提高特征的不变性。 卷积神经网络通过反向传播算法进行训练,不断调整网络参数以使得网络输出与真实标签之间的误差最小化。训练过程中需要大量的标注数据和计算资源,但是在训练完成后,卷积神经网络可以快速地对新的输入进行预测。 深度学习卷积神经网络在计算机视觉领域取得了很大的成功,例如图像分类、目标检测、人脸识别等任务。它们不仅可以自动地提取出图像中的关键特征,还可以学习到更加复杂的特征表示。此外,深度学习卷积神经网络也在自然语言处理、语音识别等领域得到广泛应用。 尽管深度学习卷积神经网络在很多任务上表现出色,但是其模型复杂度高、计算资源需求大,且对标注数据的依赖程度较高。因此,研究者们一直在努力寻求更高效的算法和更好的架构来解决这些问题,以进一步提升深度学习卷积神经网络的性能和应用范围。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值