[Python]Udacity self-driving数据集转yolo格式(目标检测任务)

本文介绍了如何将Udacity自驾车数据集,特别是crowdai的标注数据集,转换为适用于YOLO目标检测任务的格式。详细过程包括数据集的下载和转化后的目录结构,还提供了用于转化的Python脚本。
摘要由CSDN通过智能技术生成

数据集下载

https://github.com/udacity/self-driving-car/tree/master/annotations

本文转化的脚本适用于datasets1,即crowdai的标注数据集。对于autt的stuff标注数据集,需要修改其中的相关地址字符串。

目录结构

─ {root}
── udacity-annoations-crowdai
──── object-detection-crowdai # 图片存放目录
── labels_crowdai.csv  # 原始标签文件
── convert_yolo.py

转化:

python convert_yolo.py

转化后目录结构:

─ {root}
── udacity-annoations-crowdai
────  labels  # 存放框图的标签
────  images # 由object-detection-crowdai转化而来
────  classes.txt # 标签总类文件
────  yolo_train.txt  # 训练样本的路径
────  yolo_val.txt # 验证样本的路径
────  yolo_test.txt # 测试样本的路径
── labels_crowdai.csv  # 原始标签文件
── convert_yolo.py

脚本 @gist

# convert_yolo.py
import pandas as pd
import os
from pathlib import Path
import shutil
import numpy as np


def mkdir(url):
    if not os.path.exists(url):
        os.mkdir(url)


if __name__ == '__main__':
    # datasets download : https://github.com/udacity/self-driving-car/tree/master/annotations
    np.random.seed(825)
    root_url = Path(__file__).parent / 'udacity-annoations-crowdai'
    img_url 
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值