数据集下载
https://github.com/udacity/self-driving-car/tree/master/annotations
本文转化的脚本适用于datasets1,即crowdai的标注数据集。对于autt的stuff标注数据集,需要修改其中的相关地址字符串。
目录结构
─ {root}
── udacity-annoations-crowdai
──── object-detection-crowdai # 图片存放目录
── labels_crowdai.csv # 原始标签文件
── convert_yolo.py
转化:
python convert_yolo.py
转化后目录结构:
─ {root}
── udacity-annoations-crowdai
──── labels # 存放框图的标签
──── images # 由object-detection-crowdai转化而来
──── classes.txt # 标签总类文件
──── yolo_train.txt # 训练样本的路径
──── yolo_val.txt # 验证样本的路径
──── yolo_test.txt # 测试样本的路径
── labels_crowdai.csv # 原始标签文件
── convert_yolo.py
脚本 @gist
# convert_yolo.py
import pandas as pd
import os
from pathlib import Path
import shutil
import numpy as np
def mkdir(url):
if not os.path.exists(url):
os.mkdir(url)
if __name__ == '__main__':
# datasets download : https://github.com/udacity/self-driving-car/tree/master/annotations
np.random.seed(825)
root_url = Path(__file__).parent / 'udacity-annoations-crowdai'
img_url