[论文精读]HyperGCN: a new method of training graph convolutional networks on hypergraphs

论文原文:HyperGCN | Proceedings of the 33rd International Conference on Neural Information Processing Systems (acm.org)

论文代码:GitHub - malllabiisc/HyperGCN: NeurIPS 2019: HyperGCN: A New Method of Training Graph Convolutional Networks on Hypergraphs

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 省流版

1.1. 心得

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. Related work

2.4. Background: Graph convolutional network

2.5. HyperGCN: Hypergraph Convolutional Network

2.5.1. Hypergraph Laplacian

2.5.2. 1-HyperGCN

2.5.3. HyperGCN: Enhancing 1-HyperGCN with mediators

2.5.4. FastHyperGCN

2.6. Experiments for semi-supervised learning

2.6.1. Baselines

2.7. Analysis of results

2.8. HyperGCN for combinatorial optimisation

2.9. Comparison of training time

2.10. Conclusion

3. Reference List


1. 省流版

1.1. 心得

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

        ①Hypergraph characterizes complex relationship, thus they proposed hyperGCN

2.2. Introduction

        ①⭐The authors reckon Laplacian regularisation D^{-\frac{1}{2}}AD^{-\frac{1}{2}} is explicit, and it will bring similarities between arbitrary node pair. Whereas the implicit regularisation of GCN avoids this. (?????

        ②⭐They approximate hyper edge by pairwise edges, which costs less computing time.

2.3. Related work

        ①Deep learning on graphs: DNN and GCN

        ②Learning on hypergraphs

        ③Graph-based SSL

        ④Graph neural networks for combinatorial optimisation

2.4. Background: Graph convolutional network

        ①Define G=(V,E) with adjacency matrix A \in \mathbb{R}^{N \times N} and feature matrix X \in \mathbb{R}^{N \times p}

        ②Provenance of original GCN

2.5. HyperGCN: Hypergraph Convolutional Network

        ①They define H=(V,E) with \left | V \right |=n and \left | E \right |=m, where V_L denotes small number of labelled hypernodes. Each hypernode v \in V =\left \{ 1,...,n \right \} has its own feature vector x_v \in \mathbb{R}^p

        ②Only when the max relationship value in a hyperegde is low, the corresponding nodes are closed

        ③"Simulated" HGCN:

2.5.1. Hypergraph Laplacian

        ①The Laplacian can be regarded as a linear function

        ②Definition of hyperedge: 

e\in E, let (i_{e},j_{e}):=argmax_{i,j\in e}|S_{i}-S_{j}|

where S \in \mathbb{R}^n denotes the real-valued signal of hypernode

        ③Adding weights to edges as w(\{i_{e},j_{e}\}):=w(e) and self loops

        ④Their symmetrically normalised hypergraph Laplacian \mathbb{L}(S):=(I-D^{-\frac{1}{2}}A_{S}D^{-\frac{1}{2}})S

2.5.2. 1-HyperGCN

        ①Convolution of HyperGCN:

h_{v}^{(\tau+1)}=\sigma\bigg((W^{(\tau)})^{T}\sum_{u\in\mathcal{N}(v)}([\bar{A}_{S}^{(\tau)}]_{v,u} \cdot h_{u}^{(\tau)} ) \bigg)

where v denotes one node and u denotes its neighbor connected by the same hyperedge;

[\bar{A}_{S}^{(\tau)}]_{v,u} is the edge weight between node v and node u, not a adjacency matrix;

W can change the dimensionality of h.

2.5.3. HyperGCN: Enhancing 1-HyperGCN with mediators

        ①For those fully connected hypergraph:

感觉是对于连接三个顶点的超边,除了ij相连以外,还会有2(e-1)-1条边(此时的e视为简单图中两两相连的),此时超边缘的大小是2,其中有个节点作为中介器

2.5.4. FastHyperGCN

        They call HGCN without weights in X FastHyperGCN

2.6. Experiments for semi-supervised learning

2.6.1. Baselines

        ①Baselines: Hypergraph neural networks (HGNN), Multi-layer perceptron (MLP), Multi-layer perceptron + explicit hypergraph Laplacian regularisation (MLP + HLR), and Confidence Interval-based method (CI) 

        ②Tasks: topic prediction (to which document)

        ③Epoch: 200

2.7. Analysis of results

        ①Comparison of SSL in test error:

        ②They define:

E_c:=\bigcup\limits_{e\in E}\Big\{\{u,v\}:u\in e,v\in e,u\neq v\Big\}

which is the definition of edge;

w_{c}\Big(\{u,v\}\Big):=\sum_{e\in E}1_{\{u,v\}\in E_{c}}\cdot1_{u\in e}\cdot1_{v\in e}\Big(\frac{2}{|e|\cdot(|e|-1)}\Big)

which is the definition of edge weights;

E_{m}(S):=\bigcup_{e\in E}\{i_{e},j_{e}\}\quad\bigcup\quad\bigcup_{e\in E,|e|\geq3}\Big\{\{u,v\}:u\in\{i_{e},j_{e}\},v\in K_{e}\Big\}\Big\}

w_{m}\Big(S,\{u,v\}\Big):=\sum_{e\in E}\mathbb{1}_{\{u,v\}\in E_{m}(S)}\cdot\mathbb{1}_{u\in e}\cdot\mathbb{1}_{v\in e}\Big(\frac{1}{2|e|-3}\Big)

the first two are representations in HGNN and the second two are in HyperGCN and FastHyperGCN

        ③作者认为如果要近似的话,超边连接的节点为两个或三个是最好的。

        ④When the max connection of hyperedges is 3, there are the same graph construction of HGNN, FastHyperGCN, and HyperGCN. Hence they achieve similar results

        ⑤Hypergraph in the real-world dataset exists noise, which eliminates their statistical significance

        ⑥Comparison table on sythetic data and subset of DBLP:

where each synthetic hypergraphs contains 1000 hypernodes with randomly 500 hyperedges and 2 classes. Each class contains 500 hypernodes. In each graph, 100 hyperedges with 5 connections connect the nodes with the same class, and the left 400 hyperedges with 20 connections connect nodes in different classes. 对于包含两个类的超边,超边连接的超级节点的比值\eta用grid search,从0.5(噪声大)到0.75(噪声小),步长为0.05. The attributes of hypernodes are generated by random Gauss.

2.8. HyperGCN for combinatorial optimisation

        ①They aim to solve the densest k-subhypergraph problem

        ②The densest k-subhypergraph of each dataset:

        ③Visualization:

2.9. Comparison of training time

    略

2.10. Conclusion

        They get good results

3. Reference List

Yadati, N. et al. (2019) 'HyperGCN: a new method of training graph convolutional networks on hypergraphs', Neurips, pp. 1511-1522. doi: https://doi.org/10.48550/arXiv.1809.02589

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值