[论文精读]Variational Graph Auto-Encoders

论文网址:[1611.07308] Variational Graph Auto-Encoders (arxiv.org)

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 省流版

1.1. 心得

1.2. 论文总结图

2. 论文逐段精读

2.1. A latent variable model for graph-structured data

2.2. Experiments on link prediction

3. Reference


1. 省流版

1.1. 心得

(1)好短的文章捏,只有两页

1.2. 论文总结图

2. 论文逐段精读

2.1. A latent variable model for graph-structured data

        ①Task: unsupervised learning

        ②Latent space of unsupervised VGAE in Cora, a citation network dataset:

        ③Definitions: for undirected and unweighted graph G=\left ( V,E \right ), the number of nodes N=\left | V \right |, the adjacency matrix with self-loop and the diagnal elements all set to 1defined as A, the degree matrix is \mathbf{D}, the stochastic latent variables is z_i \in \mathbb{R}^{1 \times F}\mathbf{Z}=\left [ z_1,z_2,...,z_N \right ] \in\mathbb{R}^{N \times F}, node feature matrix \mathbf{X} \in \mathbb{R}^{N \times D}(但是没说这个节点特征是啥,估计自己随便定义吧)

        ④Inference model:

q(\mathbf{Z}\mid\mathbf{X},\mathbf{A})=\prod_{i=1}^Nq(\mathbf{z}_i\mid\mathbf{X},\mathbf{A})

with q(\mathbf{z}_i\mid\mathbf{X},\mathbf{A})=\mathcal{N}(\mathbf{z}_i\mid\boldsymbol{\mu}_i,\mathrm{diag}(\boldsymbol{\sigma}_i^2))

where \boldsymbol\mu = \mathrm{GCN}_{\boldsymbol{\mu}}(\mathbf{X},\mathbf{A}) is the matrix of mean vectors \mu _i;

\log \boldsymbol \sigma = \mathrm{GCN}_{\boldsymbol{\sigma}}(\mathbf{X},\mathbf{A})为啥左边要有个log啊

        ⑤A 2 layer GCN:

\mathrm{GCN}(\mathbf{X},\mathbf{A})=\mathbf{\tilde{A}}\mathrm{ReLU}(\mathbf{\tilde{A}}\mathbf{X}\mathbf{W}_{0})\mathbf{W}_{1}

where \mathbf{W}_{i} denotes weight matrix, \mathbf{\tilde{A}}=\mathbf{D}^{-\frac{1}{2}}\mathbf{A}\mathbf{D}^{-\frac{1}{2}}

        ⑥\mathrm{GCN}_{\boldsymbol{\mu}}(\mathbf{X},\mathbf{A}) 和 \mathrm{GCN}_{\boldsymbol{\sigma}}(\mathbf{X},\mathbf{A})共享\mathbf{W}_{0}的参数???什么玩意儿??为啥有俩,是引用了之前的什么高斯吗?

        ⑦Generative model:

p\left(\mathbf{A}\mid\mathbf{Z}\right)=\prod_{i=1}^{N}\prod_{j=1}^{N}p\left(A_{ij}\mid\mathbf{z}_{i},\mathbf{z}_{j}\right)

with p\left(A_{ij}=1 | \mathbf{z}_i,\mathbf{z}_j\right)=\sigma(\mathbf{z}_i^\top\mathbf{z}_j)

where \sigma \left ( \cdot \right ) represents the logistic sigmoid function

        ⑧Loss function:

\mathcal{L}=\mathbb{E}_{q(\mathbf{Z}|\mathbf{X},\mathbf{A})}\big[\log p\left(\mathbf{A}\left|\mathbf{Z}\right)\right]-\mathrm{KL}\big[q(\mathbf{Z}\left|\mathbf{X},\mathbf{A}\right)\|p(\mathbf{Z})\big]

where Gaussian prior p(\mathbf{Z})=\prod_{i}p(\mathbf{z_{i}})=\prod_{i}\mathcal{N}(\mathbf{z_{i}} | 0,\mathbf{I})

        ⑨作者觉得对于非常稀疏的邻接矩阵A,在损失函数中重新加权a) A_{ij}=1的项,或b) A_{ij}=0的子样本项可能是有益的。然后它们选择了a) 方法。

        ⑩If there is no node features, replace \mathbf{X} by indentity matrix

        ⑪Reconstruct adjacency matrix by non-probabilistic graph auto-encoder (GAE) model:

\mathbf{\hat{A}}=\sigma(\mathbf{Z}\mathbf{Z}^\top) , \mathrm{with}\quad\mathbf{Z}=\mathrm{GCN}(\mathbf{X},\mathbf{A})

2.2. Experiments on link prediction

        ①Prediction task: randomly delete some edges and keep all the node features

        ②Validation/Test set: deleted edges and unconnected node pairs with the same number

        ③Connection contained: 5% for val set and 10% for test set

        ④Epoch: 200

        ⑤Optimizer: Adam

        ⑥Learning rate: 0.01

        ⑦Hidden dim: 32

        ⑧Latent variable dim: 16

        ⑨Embedding dim: 128

        ⑩Performance comparison table with mean results and std error for 10 runs:

where * means w/o node features

3. Reference

Kipf, T. N. & Welling, M. (2016) 'Variational Graph Auto-Encoders', NIPS. doi: https://doi.org/10.48550/arXiv.1611.07308

  • 17
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值