[论文精读]D-MHGCN: An End-to-End Individual Behavioral Prediction Model Using Dual Multi-Hop Graph-

论文全名:D-MHGCN: An End-to-End Individual Behavioral Prediction Model Using Dual Multi-Hop Graph Convolutional Network

论文网址:D-MHGCN: An End-to-End Individual Behavioral Prediction Model Using Dual Multi-Hop Graph Convolutional Network | IEEE Journals & Magazine | IEEE Xplore

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 重复点

3. 论文逐段精读

3.1. Abstract

3.2. Introduction

3.3. Methodology

3.3.1. Individual Cortical Graph Construction

3.3.2. Individual Functional Connectivity Network Construction

3.3.3. Individual Behavior Score Estimation

3.3.4. Total Loss

3.4. Experimental Settings

3.4.1. Dataset

3.4.2. Implementation Details

3.4.3. Evaluation Metrics

3.5. Experimental Results and Analysis

3.5.1. Parameter Analysis

3.5.2. Comparison With State-of-The-Art Methods

3.5.3. Effectiveness of the Proposed Behavioral Prediction Framework

3.5.4. Effectiveness of Multi-Hop Graph Convolutional Operator

3.5.5. Analysis of Individual Cortical Parcellation

3.5.6. Discussion of Future Clinical Applications

3.6. Conclusion

5. Reference


1. 重复点

        ①此篇论文D-MHGCN与Multi-Scale FC-Based Multi-Order GCN: A Novel Model for Predicting Individual Behavior From fMRI的图非常相似

        ②虽然都是同样的导师和学生

        ③MSFC-MO-GCN我的笔记:[论文精读]Multi-Scale FC-Based Multi-Order GCN: A Novel Model for Predicting Individual Behavior From --CSDN博客

        ④相似点1:

        ⑤相似点2:

        ⑥仁者见仁智者见智好吧?

2. 心得

(1)

3. 论文逐段精读

3.1. Abstract

        ①Existing problem: ignores the upstream network construction

        ②They proposed Dual Multi-Hop Graph Convolutional Network (D-MHGCN)

3.2. Introduction

        ①Functional connectivity (FC) based methods are affected by: a) the quality of FC, b) the feature extraction ability in FC

3.3. Methodology

        ①The overall framework:

3.3.1. Individual Cortical Graph Construction

        ①The graph is represented by G^{C}=(V^{C},A^{C},X^{C}), where V^C denotes the cortical vertices of the brain, A^C is the spatial proximity of vertices in T1w images, X^C is FC matrix come from fMRI data

        ②Cortical parcellation separately applied on two brain hemispheres

        ③Connectivity weight in A^C: the inverse of their geometric distance. "邻接矩阵A^C中的边表示两个顶点是否在皮质表面共享一个三角形区域"(0.0我怎么知道共享不共享?作者后来又说“该图显示了稀疏但高度局部化的空间连接,其中每个顶点平均连接到大约六个最近的邻居”)

        ④\left | V^C_{left} \right |=2392 and \left | V^C_{right} \right |=2332

        ⑤Construction of FC: Pearson correlation between BOLD signals, all the negative value is set to 0, and only remains the connections which the spatial distance was less than 1

3.3.2. Individual Functional Connectivity Network Construction

(1)Problem Statement

        ①For n subject, the cortical graph is G_{n}^{C}=(V_{n}^{C},A_{n}^{C},X_{n}^{C})V_{n}^{C} denotes vertex set, A_{n}^{C} represents adjacency matrix, X_{n}^{C} is FC matrix

        ②The region level G^{FC}_n is generated by G_{n}^{C} and fMRI time series

(2)Multi-Hop Graph Convolutional Network

        ①Backbone: GCN

        ②Multi-hop aggregation method:

they defined the hop set

        ③The node feature matrix in the l-th layer:

(X_n^C)^l\in R^{|V_n^C|\times d_l}

        ④Multi-hop convolution:

(X_n^C)^{(l+1)}=\prod\limits_{0\le k\le K}\sigma((\tilde{A}_n^C)^k(X_n^C)^lW_k^l)

where \tilde{A}_n^C=(\tilde{D}_n^C)^{-1/2}(A_n^C+I)(\tilde{D}_n^C)^{-1/2}\sigma denotes ReLU activation function

        ⑤The final node feature is represented by:

f_n^C=X_n^CO

where O denotes the trainable parameters

        ⑥Classifier: SoftMax

toy example  简单的示例

(3)Individual Cortical Parcellation

        ①Atlas: Schaefer-100 atlas and the Human Brainnetome Atlas (BNA)

        ②By mapping to the standard space, they got the label vector y_i for each vertex i

        ③Employed cross-entropy loss L_{par} to calculate the difference between the actual regional labels y_i (from group-level template) and the predicted regional probabilities p_i (obtained from multi-hop GCN) with:

L_{par}=\sum_{i=1}^{|V_n^C|}\sum_{j=1}^Jy_i^j\log(p_i^j)

where J denotes the number of regions in predefined group-level template(怎么给到的每个顶点预测概率?), p_i^j denotes the probability that node i belongs to region jy_i^j=1\, or\, 0 is whether node i is in region j in the templet

        ④J in Schaefer and BNA is 50 and 106

(4)Individual Functional Connectivity Estimation

        ①The region level FCN: G^{FC}=\left ( V^{FC},A^{FC} \right )

        ②Dividing the brain of each subject to \left | V^{FC}_n \right | regions and calculating the PC of each region with all negative values are 0. The generated FC is regarded as the A^{FC}_n in G^{FC}_n

3.3.3. Individual Behavior Score Estimation

(1)Multi-Hop Graph Convolutional Layer

        ①The FC feature in the l-th layer:

(X_n^{FC})^l\in R^{|V_n^{FC}|\times d_l}

        ②The FC conv layer:

(X_n^{FC})^{(l+1)}=\underset{0\leq k\leq K}{\parallel}\sigma\left((\widetilde{A}_n^{FC})^k(X_n^{FC})^lU_k^l\right)

where \tilde{A}_{n}^{FC}=\left(\tilde{D}_{n}^{FC}\right)^{-1/2}(A_{n}^{FC}+I)\left(\tilde{D}_{n}^{FC}\right)^{-1/2}

(2)Pooling Layer

        ①Aggregation to get feature vector for each subject:

f_{n}^{FC}=\frac{1}{|V_{n}^{FC}|}\sum_{v=1}^{|V_{n}^{FC}|}(x_{v})_{n}^{FC}

...就是一个平均池化嘛

(3)Behavior Score Assessment

        ①The scores are calculated by fully connected layer:

\hat{z}_n=f_n^{FC}Q

where Q denotes the trainable parameters

        ②Measurements: MAE:

L_{net}=\frac{1}{N}\sum_{n=1}^{N}E\left(z_{n},\hat{z}_{n}\right)

where z_n is the groud truth and \hat{z}_n denotes the predicted score

3.3.4. Total Loss

        ①The total loss:

L_{\mathrm{total}}=\alpha L_{par}+L_{net}

3.4. Experimental Settings

3.4.1. Dataset

(1)Data Information

        ①Dataset: HCP S1200

        ②State of subjects: awaken, eyes open and staring a bright crosshair projected against a dark background

        ③Sample: 910

(2)Imaging Data Preprocessing

        ①Preprocessing of sMRI: 1) distortion correction, 2) alignment of T1w and T2w images, 3) bias field correction, 4) cortical tissue segmentation (gray matter, white matter, and cerebrospinal fluid), and 5) cortical reconstruction, 6) resampling

        ②Tool: FreeSurfer

        ③Preprocessing of fMRI: 1) gradient distortion correction, 2) head motion correction, 3) EPI distortion correction, 4) registration to Montreal Neurological Institute (MNI) space, 5) intensity normalization to the global mean, and 6) removal of non-brain voxels, 7) mapping, 8) resampling

(3)Behavioral Scores

        ①Cognitive tests: executive function-related test (Cognitive Flexibility), languagerelated test (Story Difficulty Level), and comprehensive cognitive test (Fluid Intelligence)

        ②Evaluation methods: NIH Toolbox

3.4.2. Implementation Details

        ①Learning rate: 0.005

        ②Optimizer: Adam

        ③L2 Norm: coefficient of 5e–5

        ④Epoch: pretraining 30 for individual functional connectivity network construction, and train individual behavior score estimation 30 rounds. Lastly, jointly train they two with 20 rounds

        ⑤Layers of NN: 7, {32,64,50,32,64,64,1} in Schaefer100 and {32,64,106,32,64,64,1} in BNA

3.4.3. Evaluation Metrics

(1)Behavioral Prediction

        ①Evaluation method: "The accuracy of behavioral prediction was evaluated by calculating the Pearson correlation between the actual behavior scores and the assessed behavior scores. The range of correlation is from −1 to 1, with higher values indicating a better behavioral prediction result."

(2)Cortical Parcellation Quality

        ①Evaluation: Silhouette Width:

\begin{aligned}SI(M)=\frac{1}{J}\sum_{j=1}^{J}\frac{a_j-b_j}{\max{\{a_j,b_j\}}}\end{aligned}

where a_j denotes the average FC among nodes within the parcel jb_j is the average FC of nodes in parcel j cross parcels

3.5. Experimental Results and Analysis

3.5.1. Parameter Analysis

        ①Parameter ablation on 5 fold cross validation:

3.5.2. Comparison With State-of-The-Art Methods

(1)Behavioral Prediction Accuarcy

        ①Performance table:

(2)Individual Cortical Parcellation Quality

        ①Sample: 910 subjects with 728 for training and 182 for testing

        ②Comparison figures:

3.5.3. Effectiveness of the Proposed Behavioral Prediction Framework

        ①Module ablation:

3.5.4. Effectiveness of Multi-Hop Graph Convolutional Operator

        ①Hop ablation:

3.5.5. Analysis of Individual Cortical Parcellation

        ①Analysis of individual cortical parcellation:

3.5.6. Discussion of Future Clinical Applications

        ①Personalized cortical segmentation map is important

3.6. Conclusion

        ~

5. Reference

Wen, X. et al. (2024) 'D-MHGCN: An End-to-End Individual Behavioral Prediction Model Using Dual Multi-Hop Graph Convolutional Network', IEEE Journal of Biomedical and Health Informatics, 28(10): 6130-6140. doi: 10.1109/JBHI.2024.3420134

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值