非线性光学极化率的经典描述

给研究生的建议:
1.不像教学由一般到特殊的演绎法,做研究可以从特殊到一般,比如由分立频率到连续频率
2.不要总想着记已知的(应试思维)“尽信书,则不如无书”,而要思考怎么来的,并且学会创造。比如从简谐振子模型开始不断添加项,假设是线性关系…

一维振子的线性响应

一维自由振动简谐振子

![[Pasted image 20231015202244.png]]

质量为m的质点固定在弹性系数为k的弹簧的一端,弹簧另一端固定,忽略弹簧的质量,任何摩擦以及重力
由胡克定律,质点受力 F = − k x F=-kx F=kx
由牛顿第二定律,得运动方程 F = m x ¨ = − k x = − m ω 0 2 x F=m\ddot{x}=-kx=-m\omega_0^2x F=mx¨=kx=mω02x
微分方程通解 x = A cos ⁡ ( ω 0 t + ϕ 0 ) ( ω 0 = k / m ) x=A\cos(\omega_0 t+\phi_0)\quad \left(\omega_0=\sqrt{k/m}\right) x=Acos(ω0t+ϕ0)(ω0=k/m )

带阻尼的简谐振子(damped oscillator)

设阻力正比于速度 f = α x ˙ f=\alpha\dot{x} f=αx˙
则阻尼振动运动方程 F = m x ¨ = − m ω 0 2 x − α x ˙ F=m\ddot{x}=-m\omega_0^2x\textcolor{#FF0000}{-\alpha\dot{x}} F=mx¨=mω02xαx˙
x ¨ + α m x ˙ + ω 0 2 x = 0 \ddot{x}+\frac{\alpha}{m}\dot{x}+\omega_0^2x=0 x¨+mαx˙+ω02x=0
定义阻尼系数 h = α 2 m h=\frac{\alpha}{2m} h=2mα
简谐运动之阻尼振动 - 知乎 (zhihu.com)
[朗道力学笔记](六)自由振动、强迫振动、共振、听一听“拍”的声音 - 知乎 (zhihu.com)

介质振子模型

介质是一个含有固有振动频率 ω 0 \omega_0 ω0的振子的集合,振子模型是描述原子中电子运动的一种粗略模型。假设介质中每一个原子中的电子都受一个弹性恢复力的作用而保持在平衡位置上;阻尼对应能量耗散(光的辐射强度);当原子受外加光场作用,原子中电子作受外力的强迫振动
F = m x ¨ = − m ω 0 2 x − 2 m h x ˙ + ( − e ) E F=m\ddot{x}=-m\omega_0^2x-2mh\dot{x}+\textcolor{#FF0000}{(-e)E} F=mx¨=mω02x2mhx˙+(e)E
运动方程(r是原子核与电子之间的距离)
d 2 r d t 2 + 2 h d r d t + ω 0 2 r = − e m E \frac{d^{2}r}{dt^{2}}+2h\frac{dr}{dt}+\omega_{0}^{2}r=-\frac{e}{m}E dt2d2r+2hdtdr+ω02r=meE
运动方程解法不唯一

这里采用傅里叶分析( ω \omega ω是光场频率)
r ( t ) = ∫ − ∞ ∞ r ( ω ) e − i ω t d ω E ( t ) = ∫ − ∞ ∞ E ( ω ) e − i ω t d ω \begin{aligned}&r(t)=\int_{-\infty}^\infty r(\omega)e^{-i\omega t}d\omega\\\\&E(t)=\int_{-\infty}^\infty E(\omega)e^{-i\omega t}d\omega\end{aligned} r(t)=r(ω)etdωE(t)=E(ω)etdω
对方程两边同时傅里叶变换
− ω 2 r ( ω ) − 2 i h ω r ( ω ) + ω 0 2 r ( ω ) = − e m E ( ω ) -\omega^{2}r(\omega)-2ih\omega r(\omega)+\omega_0^{2}r(\omega)=-\frac{e}{m}E(\omega) ω2r(ω)2ihωr(ω)+ω02r(ω)=meE(ω)

r ( ω ) = − e m E ( ω ) 1 ω 0 2 − ω 2 − 2 i h ω r(\omega)=-\frac{e}{m}E(\omega)\frac{1}{\omega_{0}^{2}-\omega^{2}-2ih\omega} r(ω)=meE(ω)ω02ω22ihω1

单位体积电偶极矩复振幅
P ( ω ) = − n e r ( ω ) = n e 2 m E ( ω ) 1 ω 0 2 − ω 2 − 2 i h ω ∝ E ( ω ) P(\omega)=-ner(\omega)=\frac{ne^2}{m}E(\omega)\frac1{\omega_0^2-\omega^2-2\text{i}h\omega}\propto E\left( \omega \right) P(ω)=ner(ω)=mne2E(ω)ω02ω22i1E(ω)
频率域内线性极化强度复振幅 P ( 1 ) ( ω ) P^{(1)}(\omega) P(1)(ω)与光电场复振幅 E ( ω ) E(\omega) E(ω)的定义关系式 P ( 1 ) ( ω ) = ε 0 X ( 1 ) ( ω ) ∙ E ( ω ) P^{(1)}(\omega)=\varepsilon_0X^{(1)}(\omega)\bullet E(\omega) P(1)(ω)=ε0X(1)(ω)E(ω)
χ ( 1 ) ( ω ) = P ( ω ) ε 0 E ( ω ) = n e 2 ε 0 m 1 ω 0 2 − ω 2 − 2 i h ω \chi^{(1)}(\omega)=\frac{P(\omega)}{\varepsilon_0E(\omega)}=\frac{ne^2}{\varepsilon_0m}\frac{1}{\omega_0^2-\omega^2-2ih\omega} χ(1)(ω)=ε0E(ω)P(ω)=ε0mne2ω02ω22ihω1

为什么要引入极化率?∵能反映物质本身的性质(强度量?) ,如 m = ρ V m=\rho V m=ρV F = E q F=Eq F=Eq

引入 F ( ω ) = 1 ω 0 2 − ω 2 − 2 i h ω F(\omega)=\frac1{\omega_0^2-\omega^2-2\mathrm{i}h\boldsymbol{\omega}} F(ω)=ω02ω22ihω1
χ ( 1 ) ( ω ) = n e 2 ε 0 m F ( ω ) = χ ′ ( ω ) + i χ ′ ′ ( ω ) \chi^{(1)}(\omega)=\frac{ne^2}{\varepsilon_0m}F(\omega)=\chi^{\prime}(\omega)+\mathrm{i}\chi^{\prime\prime}(\omega) χ(1)(ω)=ε0mne2F(ω)=χ(ω)+iχ′′(ω)
其中
χ ′ ( ω ) = n e 2 ε 0 m ω 0 2 − ω 2 ( ω 0 2 − ω 2 ) 2 + 4 h 2 ω 2 χ ′ ′ ( ω ) = n e 2 ε 0 m 2 h ω ( ω 0 2 − ω 2 ) 2 + 4 h 2 ω 2 \begin{aligned}\chi^{\prime}\left(\omega\right)&=\frac{ne^2}{\varepsilon_0m}\frac{\omega_0^2-\omega^2}{\left(\omega_0^2-\omega^2\right)^2+4h^2\omega^2}\\\chi^{\prime\prime}(\omega)&=\frac{ne^2}{\varepsilon_0m}\frac{2h\omega}{\left(\omega_0^2-\omega^2\right)^2+4h^2\omega^2}\end{aligned} χ(ω)χ′′(ω)=ε0mne2(ω02ω2)2+4h2ω2ω02ω2=ε0mne2(ω02ω2)2+4h2ω22
阻尼h引起虚部,虚部描述介质对光传输的吸收(或放大)
当频率 ω \omega ω远离共振频率 ω 0 \omega_0 ω0,频率 ω \omega ω的光波在介质中无吸收地传输
![[Pasted image 20231020142021.png]]

一维振子的非线性响应

振子恢复力添加小的非简谐项(考虑到三次)
F = − m ω 0 2 r + m A r 2 + m B r 3 F=-m\omega_0^2r\textcolor{#FF0000}{+mAr^2+mBr^3} F=mω02r+mAr2+mBr3
F = m r ¨ = − m ω 0 2 r + m A r 2 + m B r 3 − 2 m h r ˙ − e E F=m\ddot r=-m\omega_0^2r\textcolor{#FF0000}{+mAr^2+mBr^3}-2mh\dot r -eE F=mr¨=mω02r+mAr2+mBr32mhr˙eE
振子运动方程
d 2 r d t 2 + 2 h d r d t + ω 0 2 r − A r 2 − B r 3 = − e m E \frac{\mathrm{d}^2r}{\mathrm{d}t^2}+2h\frac{\mathrm{d}r}{\mathrm{d}t}+\omega_0^2r-Ar^2-Br^3=-\frac emE dt2d2r+2hdtdr+ω02rAr2Br3=meE

单个频率光场

用微扰方法求解一维振子非线性效应
假设频率为 ω \omega ω的光电场表示为
E ( t ) = E ( ω ) e − i ω t + E ∗ ( ω ) e i ω t = E ( ω ) e − i ω t + c . c . E(t)=E(\omega)e^{-i\omega t}+E^*(\omega)e^{i\omega t}=E(\omega)e^{-i\omega t}+c.c. E(t)=E(ω)et+E(ω)et=E(ω)et+c.c.
线性响应有 r ⃗ ( t ) ∝ E ⃗ ( t ) \vec{r}(t)\propto \vec{E}(t) r (t)E (t)
r ( t ) = r ( ω ) e − i ω t + r ∗ ( ω ) e i ω t = r ( ω ) e − i ω t + c . c . \left. r\left( t \right. \right) =r\left( \omega \right) e^{-i\omega t}+r^*\left( \omega \right) e^{i\omega t}=r\left( \omega \right) e^{-i\omega t}+c.c. r(t)=r(ω)et+r(ω)et=r(ω)et+c.c.

包含多个频率分量光电场

非简谐振子模型反映线性光学与非线性光学的区别

线性光学非线性光学
观测量正比于外加光场光强
不同频率的光波之间不交换能量可能产生新的光波频率
电极化强度正比于外加光场
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值