均匀介质中的高斯光束

采用稳定腔的激光器所发出的激光,将以高斯光束的形式在空间传输。

人为定义如下参数

光斑半径
等相位面曲率半径(球面波)
η \eta η 折射率
瑞利长度

  • 只要确定了束腰位置 z = 0 z=0 z=0和光斑半径最小值 ω 0 \omega_0 ω0,就可以确定任意位置z的光束半径 ω ( z ) \omega(z) ω(z)和等相位面曲率半径 R ( z ) R(z) R(z)
  • 反之,知 ω ( z ) \omega(z) ω(z) R ( z ) R(z) R(z)也能求出束腰位置和 ω 0 \omega_0 ω0

则修正后的平面波
E ( x , y , z ) = ϕ ( x , y , z ) e − i k z = E 0 ω 0 ω ( z ) exp ⁡ { − i [ k z − η ( z ) ] − i k r 2 2 q ( z ) } = E 0 ω 0 ω ( z ) exp ⁡ { − i [ k z − η ( z ) ] − r 2 [ 1 ω 2 ( z ) + i k 2 R ( z ) ] } = [ E 0 ω 0 ω ( z ) exp ⁡ ( − r 2 ω 2 ( z ) ) ] exp ⁡ { − i [ k z − η ( z ) + k r 2 2 R ( z ) ] } \begin{aligned} &E(x,y,z) \\ &=\phi(x,y,z)e^{-ikz} \\ &=E_0\frac{\omega_0}{\omega(z)}\exp\left\{-i{\left[kz-\eta(z)\right]}-i\frac{kr^2}{2q(z)}\right\} \\ &=E_0\frac{\omega_0}{\omega(z)}\exp\left\{-i\bigl[kz-\eta(z)\bigr]-r^2\biggl[\frac1{\omega^2(z)}+\frac{ik}{2R(z)}\biggr]\biggr\}\right. \\ &\begin{aligned}=&\Bigg[E_0\frac{\omega_0}{\omega(z)}\exp\Bigg(-\frac{r^2}{\omega^2(z)}\Bigg)\Bigg]\exp\Bigg\{-i\Bigg[kz-\eta(z)+\frac{kr^2}{2R(z)}\Bigg]\Bigg\}\end{aligned} \end{aligned} E(x,y,z)=ϕ(x,y,z)eikz=E0ω(z)ω0exp{i[kzη(z)]i2q(z)kr2}=E0ω(z)ω0exp{i[kzη(z)]r2[ω2(z)1+2R(z)ik]}=[E0ω(z)ω0exp(ω2(z)r2)]exp{i[kzη(z)+2R(z)kr2]}
振幅项&相位项

该式只是均匀介质中波动方程的一个解,称为基本高斯光束解,其横向依赖关系只涉及r,与方位角无关

与方位角相关的分布是高阶高斯光束解

1.振幅分布特性

高斯分布

(统计学中称为正态分布)指服从以下概率密度函数的分布 X ∼ N ( μ , σ 2 ) X\sim N\left(\mu,\sigma^2\right) XN(μ,σ2)
f ( x ; μ , σ ) = 1 σ 2 π exp ⁡ ( − ( x − μ 2 ) 2 σ 2 ) f(x;\mu,\sigma)=\frac1{\sigma\sqrt{2\pi}}\exp\left(-\frac{\left(x-\mu^2\right)}{2\sigma^2}\right) f(x;μ,σ)=σ2π 1exp(2σ2(xμ2))

位置 μ = 0 \mu=0 μ=0 ,分布幅度 标准差 σ = 1 \sigma=1 σ=1 是标准正态分布

为什么叫高斯光束?

高斯光束解的振幅项在z截面上,按照高斯函数规律变化
∣ E ∣ = E 0 ω 0 ω ( z ) exp ⁡ ( − r 2 ω 2 ( z ) ) |E|=E_0\frac{\omega_0}{\omega(z)}\exp\Bigg(-\frac{r^2}{\omega^2(z)}\Bigg) E=E0ω(z)ω0exp(ω2(z)r2)

z截面,振幅降至最大值的1/e时,离光轴的距离定义为z处光斑半径 ω ( z ) \omega(z) ω(z)

光斑半径

ω ( z ) = ω 0 1 + z 2 z 0 2 \omega(z)=\omega_0\sqrt{1+\frac{z^{2}}{z^{2}_{0}}} ω(z)=ω01+z02z2
由定义得
ω 2 ( z ) ω 0 2 − z 2 z 0 2 = 1 \frac{\omega^2(z)}{\omega^2_0}-\frac{z^2}{z^2_0}=1 ω02ω2(z)z02z2=1
光斑半径 ω ( z ) \omega(z) ω(z)随传输距离z的变化规律为双曲线

z=0处,光斑半径有最小值 ω 0 \omega_0 ω0,称为高斯光束的束腰位置

2.相位分布特性

高斯光束解的相位部分
exp ⁡ { − i [ k z − η ( z ) + k r 2 2 R ( z ) ] } \exp\Bigg\{-i\Bigg[kz-\eta(z)+\frac{kr^2}{2R(z)}\Bigg]\Bigg\} exp{i[kzη(z)+2R(z)kr2]}
知传输过程中的总相移
Φ ( x , y , z ) = [ k z − η ( z ) ] + k r 2 2 R ( z ) = k [ z + r 2 2 R ( z ) ] − tan ⁡ − 1 ( λ z π ω 0 2 ) \begin{aligned} \Phi (x,y,z) &= \left[ kz-\eta (z) \right] +\frac{kr^2}{2R(z)} \\ &= k\left[ z+\frac{r^2}{2R(z)} \right] -\tan ^{-1}\left( \frac{\lambda z}{\pi \omega _{0}^{2}} \right) \end{aligned} Φ(x,y,z)=[kzη(z)]+2R(z)kr2=k[z+2R(z)r2]tan1(πω02λz)
整理成与波数相关的项和与波数无关的项

近轴条件下,z小,arctan是小量

标准球面波总相移(光传输一段距离后相位的变化)
Φ = k z + k x 2 + y 2 2 R \Phi=kz+k\frac{x^2+y^2}{2R} Φ=kz+k2Rx2+y2
比较得,在近轴条件下高斯光束的等相位面是以 R ( z ) R(z) R(z)为半径的球面。与球面波不同,高斯光束等相位球面的球心随光束的传播而变化

等相位面曲率半径

R ( z ) = z [ 1 + ( π ω 0 2 η λ z ) 2 ] = z ( 1 + z 0 2 z 2 ) R(z)=z\Bigg[1+\Bigg(\frac{\pi\omega^2_0\eta}{\lambda z}\Bigg)^2\Bigg]=z\Bigg(1+\frac{z^2_0}{z^2}\Bigg) R(z)=z[1+(λzπω02η)2]=z(1+z2z02)

z = 0 , R ( z ) → ∞ z=0,R(z)\rightarrow \infty z=0R(z) 束腰处等相位面是平面

z → ∞ , R ( z ) ≈ z → ∞ z\rightarrow \infty,R(z)\approx z \rightarrow \infty zR(z)z 无穷远处等相位面是平面

z = z 0 , R ( z ) = 2 z 0 z=z_0,R(z)=2z_0 z=z0R(z)=2z0 等相位面半径最小

瑞利长度

光束从waist束腰传播到 z = ± z 0 z=\pm z_0 z=±z0处,光斑半径 ω ( z ) = 2 ω 0 \omega(z)=\sqrt{2}\omega_0 ω(z)=2 ω0,即光斑面积为最小值(束腰面积)的两倍

从束腰到该处的长度称为高斯光束的瑞利长度
f = z 0 = π ω 0 2 η λ f=z_0=\frac{\pi\omega^2_0\eta}{\lambda} f=z0=λπω02η

实际应用中认为基模高斯光束在瑞利长度范围内近似平行(发散现象不显著),故称瑞利长度准直距离

束腰半径 ω 0 \omega_0 ω0越小,准直距离 f f f越长,准直性越好

3.高斯光束的孔径

∣ E ∣ = E 0 ω 0 ω ( z ) exp ⁡ ( − r 2 ω 2 ( z ) ) |E|=E_0\frac{\omega_0}{\omega(z)}\exp\Bigg(-\frac{r^2}{\omega^2(z)}\Bigg) E=E0ω(z)ω0exp(ω2(z)r2)

截面上振幅的分布
A ( r ) = A 0 exp ⁡ ( − r 2 ω 2 ) A(r)=A_0\exp\biggl(-\frac{r^2}{\omega^2}\biggr) A(r)=A0exp(ω2r2)
则光强分布
I ( r ) = I 0 exp ⁡ ( − 2 r 2 ω 2 ) I(r)=I_0\exp\left(-\frac{2r^2}{\omega^2}\right) I(r)=I0exp(ω22r2)

功率等于光强×面积

以光轴为中心开一个半径为 α \alpha α的孔,光功率的比值
T = P α P ∞ = ∫ 0 α ∫ 0 2 π I ( r ) 2 π r d r d θ ∫ 0 ∞ ∫ 0 2 π I ( r ) 2 π r d r d θ = 1 − exp ⁡ ( − 2 α 2 ω 2 ) T=\frac{P_\alpha}{P_\infty}=\frac{\int_0^\alpha\int_0^{2\pi}I(r)2\pi rdrd\theta}{\int_0^\infty\int_0^{2\pi}I(r)2\pi rdrd\theta}=1-\exp\left(-\frac{2\alpha^2}{\omega^2}\right) T=PPα=002πI(r)2πrdrdθ0α02πI(r)2πrdrdθ=1exp(ω22α2)
可得不同孔径的功率透过率

孔径越大,加工越难。只要孔径大于 3 ω / 2 3\omega/2 3ω/2,即可保证高斯光束的绝大部分功率有效透过

4. 远场发散角

在瑞利范围之外,高斯光束迅速发散
双曲线渐近线的夹角(半角)

ω 0 \omega_0 ω0 大,发散角小
θ 1 e = a r c t a n ω ( z ) z = lim ⁡ z → ∞ ω ( z ) z = ω 0 z 0 = λ π ω 0 = λ π z 0 \begin{aligned}\theta_{\frac{1}{e}}&=arctan\frac{\omega(z)}{z}=\lim_{z\to\infty}\frac{\omega(z)}z=\frac{\omega_0}{z_0} \\&=\frac\lambda{\pi\omega_0}=\sqrt{\frac\lambda{\pi z_0}}\end{aligned} θe1=arctanzω(z)=zlimzω(z)=z0ω0=πω0λ=πz0λ
z → ∞ , η → 1 , z 0 = π ω 0 2 λ z\rightarrow \infty,\eta \rightarrow 1,z_0=\frac{\pi\omega_0^2}{\lambda} zη1z0=λπω02
包含在全远场发散角内的光束功率占高斯光束总功率的86.5%

束腰半径 ω 0 \omega_0 ω0越大,角越小,准直性越好

总结:高斯光束定义

高斯光束是亥姆赫兹方程在均匀介质中光波模式的一种特解形式,在轴线附近可以看成一种非均匀高斯球面波 ,其振幅在横截面内为一高斯分布,强度集中在轴线及其附近,在传播过程中曲率中心不断改变,且等相位面保持球面直至变成平面。

参考:
(15 封私信 / 27 条消息) 怎样在只学过基础光学的情况下快速学习高斯光束和高阶高斯光束? - 知乎 (zhihu.com)

模拟:
Gauss光束在空间中的分布_高斯光束能量分布-CSDN博客

形象理解the Guassian beam
激光应用讲座2:高斯光束_哔哩哔哩_bilibili

  • 48
    点赞
  • 46
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值