提出问题:在测试时候选区域提取耗费大量的时间。
解决方法:用深度卷积神经网络计算候选区域,引入了新的候选区域网络(RPN),其共享目标检测网络的卷积层。
Faster R-CNN:
主要由两个模块组成:(1)候选区域的深度全卷积网络,(2)使用候选区域的Fast R-CNN检测器。
1、Region Proposal Network (RPN)区域候选网络
是为了提出候选区域的全卷积网络,基于滑窗的无类别目标检测器。其候选窗口称为anchors。
我们在最后的共享卷积层输出的卷积特征图上滑动一个小网络。这个小网络将输入卷积特征映射的n×n窗口作为输入,将其映射到一个低维特征。这个特征被输入到两个子全连接层 — 一个边界框回归层(reg)和一个边界框分类层(cls)。也就是说,计算每个像素的9个尺度下的值,每个点由256维特征转化为cls=2k scores和reg=4k coordinates是[x,y,w,h]4个偏移量。
2、Anchors:锚点
滑窗的中心在原像素空间的映射点即为Anchors。在每个滑动窗口位置,同时预测k个候选区域。reg层具有4k个输出(k个边界框的坐标ÿ