学习笔记十——Faster R-CNN

Faster R-CNN是一种高效的目标检测框架,通过引入区域提案网络(RPN)解决了候选区域提取的效率问题。RPN是全卷积网络,与Fast R-CNN共享卷积层,它在特征图上滑动并预测锚点的类别和位置。通过RoI Pooling,Faster R-CNN将不同大小的候选区域转换为固定尺寸的特征,然后进行分类和边界框回归。损失函数基于IoU阈值选择正负样本进行训练,提高了检测精度。
摘要由CSDN通过智能技术生成

提出问题:在测试时候选区域提取耗费大量的时间。

解决方法:用深度卷积神经网络计算候选区域,引入了新的候选区域网络(RPN),其共享目标检测网络的卷积层。

Faster R-CNN:

主要由两个模块组成:(1)候选区域的深度全卷积网络,(2)使用候选区域的Fast R-CNN检测器。

1、Region Proposal Network (RPN)区域候选网络

是为了提出候选区域的全卷积网络,基于滑窗的无类别目标检测器。其候选窗口称为anchors。

我们在最后的共享卷积层输出的卷积特征图上滑动一个小网络。这个小网络将输入卷积特征映射的n×n窗口作为输入,将其映射到一个低维特征。这个特征被输入到两个子全连接层  —  一个边界框回归层(reg)和一个边界框分类层(cls)。也就是说,计算每个像素的9个尺度下的值,每个点由256维特征转化为cls=2k scores和reg=4k coordinates是[x,y,w,h]4个偏移量。

2、Anchors:锚点

滑窗的中心在原像素空间的映射点即为Anchors。在每个滑动窗口位置,同时预测k个候选区域。reg层具有4k个输出(k个边界框的坐标ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值