一、基础技巧
1. 三段式需求公式
格式框架:
我要[具体任务],需要[实现效果]/希望[解决痛点],但担心[潜在问题]...
示例:
2. 精准提需求技巧
技术约束强化
-
增加技术约束
▸ 明确语言/框架/性能要求
▸ 示例:
-
代码规范要求
▸ 强制注释/命名规则/模式限制
▸ 示例:
3. 调试优化技巧
错误修复案例
例1(正则表达式调试):
例2(并发优化):
4. 领域知识结合技巧
- 专业模型调用
▸ 指定专业模型调用/数据源
▸ 示例:
5. 标准错误规避表
错误类型 | 反面案例 | 优化案例 | 改进要点 |
---|---|---|---|
模糊笼统 | “写个爬虫” | “用Scrapy框架实现异步知乎回答采集…” | 框架限定+功能明确 |
忽视反馈 | 直接使用首次结果 | “第二版需要支持动态代理池集成…” | 迭代需求+参数可配置 |
角色混乱 | “作为诗人写SQL” | “资深DBA设计金融级MySQL优化方案” | 专业角色+场景定位 |
二、进阶技巧
在程序开发过程中,掌握提示词工程的核心技巧可以显著提升DeepSeek的输出质量。本章将详细介绍两个重要的框架和具体的实施策略。
1. TASTE框架:构建基础提示结构
TASTE框架提供了一个完整的提示词结构,特别适合程序开发场景:
1.1 框架组成
- Task(任务):明确定义模型需要完成的具体编程任务
- Audience(受众):指定代码的目标使用者和场景
- Structure(结构):规定代码的组织结构和架构要求
- Tone(语气):确定代码风格和注释风格
- Example(示例):提供参考代码或期望输出的示例
1.2 实践示例
Task: 实现一个高性能的数据排序算法
Audience: 初级 Python 开发者
Structure:
- 函数文档说明
- 参数验证
- 核心算法实现
- 测试用例
Tone: 注重代码可读性,包含详细注释
Example: 提供一个简单的快速排序示例
2. SPECTRA模型:任务分解策略
SPECTRA模型提供了一个系统化的任务分解方法:
2.1 模型组成
- Segmentation(分割):将大型编程任务分解为独立但相关的部分
- Prioritization(优先级):确定子任务的重要性和执行顺序
- Elaboration(细化):深入探讨每个子任务的细节