这篇解读聚焦于精准调教AI的核心技巧与提示语的编写方法,旨在帮助用户更好地掌握AI的使用。解读内容来源于:清华大学Deepseek资料
1. 精准调教AI的秘诀
策略1:精准定义任务,让AI明确你的需求
-
核心原则:像给实习生布置工作一样清晰,避免模糊指令。
-
应用场景:技术文档撰写、数据分析、产品描述等需要精确输出的任务。
-
详细方法:
1.1 要素拆解:任务目标 + 具体要求 + 限制条件例:
❌ 模糊指令:“写一篇关于环保的文章。”
✅ 精准指令:“写一篇800字科普文,主题‘塑料污染对海洋生物的影响’,要求:
用高中生能理解的语言,包含2023年《Science》最新研究数据,结尾给出3个普通人可执行的环保建议”
1.2 关键词锁定:用特定词汇限定方向(学术论文润色):
❌ 模糊指令:“帮我修改这段文字。”
✅ 精准指令:“将这段文字改为学术论文风格,增加因果关系连接词(如‘因此’‘鉴于’),删除主观形容词。”
策略2:分解复杂任务
-
核心原则:把“写毕业论文”拆成“查资料→列大纲→写引言→做数据分析”等子任务。
-
应用场景:市场分析报告、代码开发、长篇内容创作等多环节任务。
-
详细方法:
1.1 链式提示法:
示例(用户增长分析):
① 第一步:“整理这份用户数据,按年龄段分组统计月活跃人数。”
② 第二步:“用折线图展示25-34岁群体近半年的活跃趋势。”
③ 第三步:“结合我们的促销活动时间,分析峰值出现的原因。”
1.2 逻辑支架法:
示例(竞品分析):
从以下维度对比A产品和B产品
① 核心功能差异(用✔️/❌符号标注)
② 价格策略(列出基础版/高级版价格)
③ 用户评价关键词(从官网摘取TOP3高频词)”
-
避坑指南:
分步时遗漏关键环节 → AI输出断层解法:用连接词明确步骤关系, 如:“在完成上述价格对比后,接着分析……”
策略3:引导性问题设计
-
核心原则:用“为什么→怎么做→如果…会怎样”引导AI深度思考。
-
应用场景:战略决策、学术研究、创意发散等需要逻辑推导的任务。
-
详细方法:
1.1 因果链提问法:
示例(商业决策):
❌ 直接问:“要不要开拓东南亚市场?”
✅ 引导问:“如果开拓东南亚市场:
① 可能遇到哪些文化差异风险?
② 我们的产品需要做哪些本土化调整?
③ 预计前12个月的投入产出比如何计算?”
1.2 假设挑战法:
示例(论文修改):
“你提出‘AI将取代50%的客服岗位’,请验证:
这个数据的最新来源是否可靠?
是否考虑了语言模型的文化适应性障碍?
能否补充2024年东南亚企业的反例?”
1.3 高阶技巧
红队辩论法:要求AI自我反驳
示例:“先阐述‘远程办公提升效率’的3个理由,再以反对者身份提出2个反驳. 点,最后综合双方观点给出结论。”
策略4:提示语长度控制:像发短信一样精简
-
核心原则:重要内容前置,避免嵌套结构(如:“在…的前提下,如果…然而…”)。
-
应用场景:快速问答、信息检索、简单指令执行等高效场景。
-
详细方法:
1.1 三要素模板:动词 + 对象 + 要求
示例:
❌ 冗长:“我这里有一份关于2023年新能源汽车销量的数据,包含品牌、季度销量、地区分布等信息,能不能帮我做一个分析,最好有图表,然后总结一下趋势?”
✅ 精简:“用柱状图对比2023年Q1-Q4特斯拉vs比亚迪销量,附100字趋势总结。”
1.2 分阶段压缩法:示例(论文降重):
① 第一轮:“将这段文字用学术口语改写,保留专业术语。”
② 第二轮:“删除重复论证,用‘首先、其次、最后’重新组织段落。”
-
避坑指南:
过度缩写丢失关键信息 → AI误解解法:核心名词不简写,如“ROI(投资回报率)”首次出现写全称。
策略5:开放vs封闭式提示
核心原则:开放提问挖广度,封闭提问要精度。
对比案例:
混合使用技巧:
1.1 漏斗式提问:
先开放后封闭
示例(产品设计):
① 开放:“提出5种老年人智能手表的创新功能”
② 封闭:“针对‘跌倒检测’功能,设计3种不同的算法实现路径,用流程图表示。”
案例:策划一场AI主题沙龙
案例:
分步提示语设计:
1. 精准定义:
“列出10个ChatGPT在企业应用的讨论话题,按技术难度从低到高排序。”
2. 分解任务:
“选择‘AI客服’话题,分三部分准备材料:① 现有痛点 ② 实施案例 ③ 风险对策”
3. 引导提问:
“如果企业用AI客服取代80%人力,可能引发哪些劳资纠纷?请模拟资方和工会的辩论观点。”
4. 控制长度:
“用表格整理辩论双方的核心论点,每点不超过15字。”
5. 平衡开放度:
“在‘AI伦理’板块,设计1个开放式讨论题+2个有选项的投票题。”
由于内容很多,小林专门整理完整版笔记,这是笔记的纲要
强烈推荐给大家