在腾讯云服务器上安装tensorflow-1.15-gpu(NVIDIA TESLA T4 + WINDOWS)

本文详细介绍了在腾讯云GPU服务器上安装Tensorflow1.15的过程,包括选择合适的系统版本(WindowsServer2016)、安装TeslaT4显卡驱动、CUDA10.0和cuDNN,以及解决Anaconda创建环境时的HTTPError问题。安装完成后,通过nvidia-smi命令检查GPU资源使用情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于腾讯云服务器的使用,就不过多赘述,这里有一个新手向的介绍视频,因为是拿来做深度学习,所以我买的是GPU服务器,显卡是Tesla T4,这一款需要自己装显卡驱动。

腾讯云轻量应用服务器远程桌面登录挂机教程-新手教程_哔哩哔哩_bilibili

注意,在购买的时候会让你选择系统版本,可以选windows/linux之类的,这里你需要看一下你要安装的tensorflow版本。像我一开始没想太多选择的是Windows server 2019,结果装驱动的时候发现匹配的显卡驱动最低版本只支持CUDA10.1,但是我要装的tensorflow 1.15 是和10.0匹配的,后面也出现了一系列的报错,最后把系统换成支持CUDA10.0的2016才成功。

我的版本配置:显卡Tesla T4+windows server 2016+CUDA10.0+cuDNN7.4.2+tensorflow1.15-gpu+Anaconda3-2021.11

不过云服务器换系统很方便,在控制端点几下,几分钟就好,更换系统可以参照

腾讯云服务器如何更换系统? - 腾讯云开发者社区-腾讯云 (tencent.com)

安装步骤以官方教程为主,需要参照哪些都会列出来。

装显卡驱动

连上服务器后,第一件事是把IE浏览器换成EDGE,然后就和自己电脑一样,先从装显卡驱动开始。

这部分也不需要多说,官方教程写得非常明白。唯一需要注意的是要定好后续用的CUDA版本,以选择匹配的显卡型号。

GPU 云服务器 安装 NVIDIA Tesla 驱动-操作指南-文档中心-腾讯云 (tencent.com)

安装好后在设备管理器可以看到多了你的显卡,但是在任务管理器看不到,我也不知道为啥。

安装CUDA

GPU 云服务器 安装 CUDA 驱动-操作指南-文档中心-腾讯云 (tencent.com)

CUDA也是跟官方走,选好版本

装好CUDA和Anaconda后,看一下环境变量的Path有没有缺漏,这点十分重要,关系到tf-gpu能够顺利运行。

GPU 云服务器 使用 Windows GPU 云服务器搭建深度学习环境-最佳实践-文档中心-腾讯云 (tencent.com)

官方有一个搭建深度学习环境的教程,强烈建议看一下,里面详细的教你怎么选CUDA这些东西的版本已经环境变量。

框里圈起来的5个加上Anaconda/Scrips,一共6个一个都不能少,确保都在path里。

安装cuDNN

cuDNN版本照常安装,有一个问题是选系统版本那里只有windows7/10没有server,我选的win10,最后也成功运行了,可以参考。

创建环境

在命令栏输入以下代码

conda create -n tensorflow1.15-gpu python=3.7#tensorflow1.15-gpu是环境名称

这里不出意外的话会遇到HTTPError的问题,网上的意见都是换各种国内源,试了很多都行不通

之前我的.condarc文件(在C盘用户目录下,没有就conda config一下),内容都是

default_channels:
  - https://anaconda.mirrors.sjtug.sjtu.edu.cn/pkgs/r
  - https://anaconda.mirrors.sjtug.sjtu.edu.cn/pkgs/main
custom_channels:
  conda-forge: https://anaconda.mirrors.sjtug.sjtu.edu.cn/cloud/
  pytorch: https://anaconda.mirrors.sjtug.sjtu.edu.cn/cloud/
channels:
  - defaults

我按照这个换了行不通(这个内容在其他电脑上安装是好使的,不知道为什么在服务器上疯狂报错)

后来翻到了这个教程,只有它有用

Anaconda建立新的环境,出现CondaHTTPError: HTTP 000 CONNECTION FAILED for url ...... 解决过程 - tianlang25 - 博客园 (cnblogs.com)

即把.condarc文件的内容换成

ssl_verify: true
show_channel_urls: true

channels:
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/win-64/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64/

激活环境

创建好环境后,我们可以进行后续的安装操作了

在anaconda promp中激活环境

conda activate tensorflow1.15-gpu#从base切换到你创建的环境中

安装tensorflow

pip install tensorflow_gpu==1.15

版本验证

等代码跑完就安装好了,验证是否成功安装tensorflow-gpu版本可以在虚拟环境中输入

python
import tensorflow as tf
tf.test.is_gpu_available()  # 返回True则安装成功 

以上就是在云服务器安装tensorflow1.15的全部过程。

只要版本是对的,就算还有一些小bug,百度报错信息基本都能解决,我的这篇教程也写了一些常见报错的解决方法。

windows10安装tensorflow-gpu_Silver_777的博客-CSDN博客_tensorflowgpu安装win10

关于Windows server 2016的一些问题

这个系统版本有些特殊,如果你是做3D渲染,除了安装NVIDIA Tesla 驱动和CUDA 驱动驱动以外,还需要安装NVIDIA GRID 驱动

GPU 云服务器 安装 NVIDIA GRID 驱动-操作指南-文档中心-腾讯云 (tencent.com)

而且还有一些特殊的地方,像我只是深度学习,所以没有装NVIDIA GRID 驱动,虽然GPU也可以正常用,但是在任务管理器是看不到GPU资源使用情况的

客服给的解释是:

关于您反馈的问题2018年国庆后的Win10、Server2019、Server2022、Win11这些新系统才会在任务管理器的性能页签里显示GPU模块,Server2016等低版本系统是不会显示的,在此基础上,还需要安装Grid驱动才行,而Grid License本来就是需要跟NVIDIA申请的,由于您当前服务器是2016的操作系统,当前是需要您进行安装的

当前GPU NVIDIA驱动分两种,计算和渲染,如果是3D渲染业务,需要安装Grid驱动,您可根据您当前的业务来进行确认

也就是可能需要装NVIDIA GRID 驱动,才能在任务管理器看到GPU,不过这也问题不大,程序跑起来之后,本地端控制台的监控可以看GPU调用,但是可能会有些延迟。

也可以在命令栏里输入nvidia-smi看资源调用

cd C:\Program Files\NVIDIA Corporation\NVSMI
nvidia-smi

就可以看到当前的GPU使用率

<think>好的,我现在需要帮助用户在阿里云ECS服务器上安装和配置TensorFlow 1.x版本。首先,我应该回忆一下相关的步骤和可能遇到的问题。根据用户提供的引用内容,特别是引用[1]和引用[4],用户之前有在CentOS系统上搭建环境的经验,可能遇到了一些问题,现在需要针对TensorFlow 1.x进行配置。 首先,用户的操作系统是CentOS 7.6,所以需要确认TensorFlow 1.x是否支持该版本。TensorFlow 1.x比较旧,可能对Python版本有要求,比如Python 3.5或3.6。我需要先指导用户安装合适的Python版本。 接下来,安装Python虚拟环境是必要的,这样可以隔离不同项目的依赖。使用virtualenv或者venv都可以,但根据引用[1]中的步骤,用户可能已经熟悉了virtualenv,所以推荐使用。 然后,安装TensorFlow 1.x。用户需要指定版本号,比如1.15.0,这是TensorFlow 1.x的最后一个版本,支持CPU和GPU。不过如果服务器没有GPU,可能需要安装纯CPU版本。根据引用[4]中的pip安装命令,用户需要使用正确的包URL。这里需要注意,可能需要从TensorFlow官方或者阿里云镜像获取安装包,特别是如果默认源速度慢的话,可以换成阿里云的镜像源。 安装完成后,验证是否成功,可以通过Python解释器导入TensorFlow并检查版本。这部分需要用户执行简单的命令,应该不会有问题,但如果出现错误,可能需要检查依赖库,比如gcc版本或者其他系统库是否满足要求。 另外,用户可能想使用Jupyter Notebook,如引用[1]中提到的。需要安装Jupyter并配置,可能涉及到端口开放和防火墙设置,确保可以通过浏览器访问。这里需要提醒用户配置安全组规则,允许对应的端口(如8888)的入站流量。 还要考虑环境持久化的问题,比如使用Docker容器来部署,如引用[3]提到的TensorFlow Serving。不过用户可能只需要运行环境,而不是服务部署,所以Docker是可选项,不是必须的步骤。 可能遇到的问题包括Python版本不兼容、pip安装失败、缺少系统依赖库等。需要给出解决方案,比如使用软件集合库(SCL)安装更高版本的Python,或者安装必要的开发工具如gcc、make等。 最后,生成相关问题时,需要考虑用户后续可能的需求,比如性能优化、环境迁移、多版本共存等。这些问题应该基于安装配置过程中的潜在扩展点来设计。 总结步骤应该是:系统更新→安装Python 3.6→创建虚拟环境→安装TensorFlow 1.x→验证安装安装Jupyter→配置安全组→运行测试。同时,提醒用户注意版本兼容性和依赖问题,以及如何利用阿里云的资源来加速安装过程。</think>### 在阿里云ECS服务器上搭建TensorFlow 1.x环境的步骤 #### 1. **系统初始化与依赖安装** - **更新系统** 确保系统软件包为最新版本: ```bash sudo yum update -y ``` - **安装开发工具链** 安装编译PythonTensorFlow所需的工具: ```bash sudo yum install -y gcc-c++ make zlib-devel openssl-devel epel-release ``` #### 2. **安装Python 3.6** TensorFlow 1.x支持Python 3.5-3.7,推荐使用Python 3.6: ```bash sudo yum install -y https://repo.ius.io/ius-release-el7.rpm sudo yum install -y python36u python36u-devel python36u-pip ``` #### 3. **创建虚拟环境** - 安装虚拟环境工具: ```bash sudo pip3.6 install virtualenv ``` - 创建并激活虚拟环境: ```bash virtualenv -p /usr/bin/python3.6 ~/tensorflow1-env source ~/tensorflow1-env/bin/activate ``` #### 4. **安装TensorFlow 1.x** - 使用阿里云镜像加速安装(替换默认PyPI源): ```bash pip install --upgrade pip pip install tensorflow==1.15.0 -i https://mirrors.aliyun.com/pypi/simple/ ``` 若需GPU支持,安装`tensorflow-gpu==1.15.0`(需提前配置CUDA和cuDNN)[^3]。 #### 5. **验证安装** ```bash python -c "import tensorflow as tf; print(tf.__version__)" ``` 输出应为`1.15.0`。若报错`GLIBCXX`版本问题,需更新libstdc++库: ```bash sudo yum install -y libstdc++-static ``` #### 6. **安装Jupyter Notebook(可选)** - 在虚拟环境中安装: ```bash pip install jupyter ``` - 配置Jupyter远程访问: ```bash jupyter notebook --generate-config echo "c.NotebookApp.ip = '0.0.0.0'" >> ~/.jupyter/jupyter_notebook_config.py echo "c.NotebookApp.port = 8888" >> ~/.jupyter/jupyter_notebook_config.py ``` - 启动Jupyter: ```bash jupyter notebook --no-browser ``` - **安全组配置**:在阿里云控制台开放ECS实例的`8888`端口[^2]。 #### 7. **持久化环境(可选)** 若需长期使用,可通过Docker容器化部署: ```bash docker pull tensorflow/tensorflow:1.15.0 docker run -it -p 8888:8888 tensorflow/tensorflow:1.15.0 ``` ### 常见问题解决 - **GLIBC版本过低**:升级至CentOS 7.9或通过`devtoolset`升级GCC。 - **依赖冲突**:使用虚拟环境隔离依赖。 - **网络超时**:切换阿里云镜像源`-i https://mirrors.aliyun.com/pypi/simple/`[^4]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值